The Astrophysics of Cosmology

Bruno Leibundgut European Southern Observatory

The expanding universe

	2003aj	6 2003ak	HST04Kur	o HST04Mcg	o HST04Gre
	0 2002fw	2002hp	HST040mb	2002fx	HST05Zwi
にある	2002kd	o HST04Rak	2002hr	2002kc	2003be
	2006fc :	2006fd	THE FOR NGC 221	VELOCITY-DISTANC EXTRA-GALACTIC VELOCITY HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	E RELATION NEBULAE DISTÂNCE

14,300 miles per second

135,000,000 light years

The original Hubble Diagram

A modern Hubble Diagram

The expansion of the universe

Luminosity distance in an isotropic, homogeneous universe as a Taylor expansion

$$D_{L} = \frac{cz}{H_{0}} \left\{ 1 + \frac{1}{2} (1 - q_{0})z - \frac{1}{6} \left[1 - q_{0} - 3q_{0}^{2} + j_{0} \pm \frac{c^{2}}{H_{0}^{2}R^{2}} \right] z^{2} + O(z^{3}) \right\}$$

Hubble's Law acceleration

jerk/equation of state

$$H_{0} = \frac{\dot{a}}{a} \qquad q_{0} = -\frac{\ddot{a}}{a}H_{0}^{-2} \qquad j_{0} = \frac{\ddot{a}}{a}H_{0}^{-3}$$

To measure cosmological parameters (distances) you need to

- understand your source
- understand what can affect the light on its path to the observer ('foregrounds')
- know your local environment

Establish a cosmological distance indicator in the local universe (z<0.05)

evolution (primary and secondary) interstellar and intergalactic dust gravitational lensing

Measure objects at cosmological distances

- establish identity of distance indicator
- control measurement errors

The experiment

Establish a cosmological distance indicator in the local universe (z<0.05)

evolution → light curve shapes, colours, spectroscopy
dust → colours, spectroscopy
gravitational lensing → difficult, need mapping of
light beam

Measure objects at cosmological distances

• High-z SN Search Team, Supernova Cosmology Project, SNLS, ESSENCE, HST searches

Supernovae as distance indicators

Type Ia Supernovae are extremely accurate distance indicators

Contamination Photometry K-corrections Malmquist bias Normalisation **Evolution** Absorption Local expansion field

Contamination Photometry K-corrections Malmquist bias Normalisation **Evolution** Absorption Local expansion field

measurement

source

path local environment

What are supernovae?

Stellar explosions

Producer and recycler of all higher

Supernova classification

Based on spectroscopy

Know your source

Type Ia Supernovae

- complicated source
- interesting physics
- progenitor systems
- → determine the global parameters of the explosions
 - fuel \rightarrow nickel mass \rightarrow distribution in the ejecta
 - total mass
 - explosion energy

Thermonuclear Supernovae

The "standard model"

White dwarf in a binary system Growing to the Chandrasekhar mass $(M_{Chand}=1.4 M_{\odot})$ by mass transfer from a nearby star

© ESA

The "standard model"

Density $\sim 10^9$ - 10^{10} g/cm

Temperature: a few 10⁹ K

Radii: a few 1000 km

Explosion energy:

Fusion of C+C, C+O, O+O $\Rightarrow "Fe"$

There is a lot more to this – you need to contact your explosive theory friends

Are SNe Ia standard candles?

No!

- large variations in
 - light curve shapes
 - colours
 - spectral evolution
 - polarimetry
- some clear outliers
 - what is a type Ia supernova?
- differences in physical parameters
 - Ni mass
 - ejecta mass

Global explosion parameters

Determine the nickel mass in the explosion from the peak luminosity

• large variations (up to a factor of 10)

Possibly determine

- total mass of the explosion or
- differences distribution of the nickel, i.e. the ashes of the explosion or
- differences in the explosion energies

Radioactivity

Isotopes of Ni and other elements

> conversion of γrays and positrons into heat and optical photons

Bolometric light curves

Ni masses from light curves

Are SNe Ia good distance indicators?

Yes!

• normalisation through the light curve shape

– still problems with methods!

- Hubble diagram of nearby SNe Ia
- peak luminosities of nearby supernovae

Determining H₀ from models

Hubble's law $D = \frac{v}{H_0} = \frac{cz}{H_0}$ Luminosity distance $D_L = \sqrt{\frac{L}{4\pi F}}$ Ni-Co decay

$$E_{Ni} = \frac{\lambda_{Ni}\lambda_{Co}}{\lambda_{Ni} - \lambda_{Co}} \left\{ \left[Q_{Ni} \left(\frac{\lambda_{Ni}}{\lambda_{Co}} - 1 \right) - Q_{Co} \right] e^{-\lambda_{Ni}t} + Q_{Co} e^{-\lambda_{Co}t} \right\} N_{Ni,0}$$

H₀ from the nickel mass

α: conversion of nickel energy into radiation (L= αE_{Ni}) ε(t): energy deposited in the supernova ejecta

Need bolometric flux at maximum F and the redshift *z* as observables

Stritzinger & Leibundgut (2005)

Rise time (15-25 days) → about 10% uncertainty

Arnett's rule

energy input at maximum equals radiated energy (i.e. α≈1, ε(t_{max}) ≈1)

Nickel mass from models

→ uniquely defines the bolometric peak luminosity

H₀ and the Ni mass

Individual SNe follow the 1/M dependency.

Problem:

Since they have individual Ni masses it is not clear which one to apply!

Determine a lower limit for H₀

Originally thought of as deceleration due to the action of gravity in a matter dominated universe

$$D = \frac{cz}{H_0} \left[1 + \frac{1}{2} (1 - q_0) z \right]$$
$$q_0 = -\frac{\ddot{a}}{a} H_0^{-2}$$

Friedmann cosmology

Assumption: homogeneous and isotropic universe

Null geodesic in a Friedmann-Robertson-Walker metric:

$$D_{L} = \frac{(1+z)c}{H_{0}\sqrt{|\Omega_{\kappa}|}} S\left\{ \sqrt{|\Omega_{\kappa}|} \int_{0}^{z} \left[\Omega_{\kappa}(1+z')^{2} + \Omega_{M}(1+z')^{3} + \Omega_{\Lambda} \right]^{-\frac{1}{2}} dz' \right\}$$

Measure acceleration

Cosmological implication

ESSENCE

World-wide collaboration to find and characterise SNe Ia with 0.2 < z < 0.8

Search with CTIO 4m Blanco telescope

Spectroscopy with VLT, Gemini, Keck, Magellan

Goal: Measure distances to 200 SNe Ia with an overall accuracy of 5% → determine ω to 10% overall

SNLS – The SuperNova Legacy Survey

World-wide collaboration to find and characterise SNe Ia with 0.2 < *z* < 0.8 **Search with CFHT 4m** telescope **Spectroscopy with VLT**, Gemini, Keck, Magellan **Goal: Measure distances** to 700 SNe Ia with an overall accuracy of 5% \rightarrow determine ω to 7% overall

The equation of state parameter ω

General luminosity distance

$$D_{L} = \frac{(1+z)c}{H_{0}\sqrt{|\Omega_{\kappa}|}} S\left\{\sqrt{|\Omega_{\kappa}|} \int_{0}^{z} \left[\Omega_{\kappa}(1+z')^{2} + \sum_{i}\Omega_{i}(1+z')^{3(1+\omega_{i})}\right]^{-\frac{1}{2}} dz'\right\}$$

• with
$$\Omega_{\kappa} = 1 - \sum_{i} \Omega_{i}$$
 and $\omega_{i} = \frac{P_{i}}{\rho_{i}c^{2}}$

 $ω_M = 0$ (matter) $ω_R = \frac{1}{3}$ (radiation) $ω_\Lambda = -1$ (cosmological constant)

The SN Ia Hubble Diagram

Wood-Vasey et al. 2007

Combination of ESSENCE, SNLS and nearby SNe Ia

Cosmology results

SNLS 1st year (Astier et al. 2006)

- 71 distant SNe Ia
 - flat geometry and combined with BAO results
 - $\Omega_{\rm M} = 0.271 \pm 0.021 \text{ (stat)} \pm 0.007 \text{ (sys)}$

 $w = -1.02 \pm 0.09$ (stat) ± 0.054 (sys)

- ESSENCE 3 years (Wood-Vasey et al. 2007)
 - 60 distant SNe Ia
 - plus 45 nearby SNe Ia, plus 57 SNe Ia from SNLS 1st year
 - flat geometry and combined with BAO

 $w = -1.07 \pm 0.09 (stat) \pm 0.13 (sys)$

 $\Omega_{\rm M}=0.27\pm0.03$

The so far most complete SN Ia sample (Riess et al. 2007)

Collected all available distant SNe Ia

- Riess et al. (2004)
- Astier et al. (2006)
- Wood-Vasey et al. (2007)
- \rightarrow 23 SNe Ia with z>1
- \rightarrow total of 182 SNe Ia with z>0.0233
 - (v=7000 km/s)

lower redshift limit to avoid any local effects

The currently most complete sample (Kowalski et al. 2008)

Federate all available SNe Ia

- **58** low redshift SNe Ia (0.015<z<0.15)
- ► 41 SNe Ia from the Supernova Cosmology Project

(Perlmutter et al. 1999 and Knop et al. 2003) and 42 SNe Ia

from the High-z Supernova Search Team (Schmidt et al. 1998, Riess et al. 1998, Tonry et al. 2003, Barris et al. 2004)

72 SNe Ia from SNLS (Astier et al. 2006) and 75 SNe Ia

from ESSENCE (Wood-Vasey et al. 2007)

> 29 SNe Ia from HST (Riess et al. 2007)

► (22 at z>1)

→ A total of 307 SNe Ia

The most complete SN Hubble Diagram

Binned distribution shown

- 13 different data sources
- uniform light curve fitting
- uniform cosmological analysis

Cosmological result

SNe Ia combined with BAO and CMB results assuming flat geometry

- $\Omega_{\rm M} = 0.274 \pm 0.016$ (stat) ± 0.012 (sys)
- $w = -0.969 \pm 0.06$ (stat) ± 0.07 (sys)
- SNe Ia combined with BAO and CMB results
 - $\Omega_{\rm M} = 0.285 \pm 0.020$ (stat) ± 0.010 (sys)
 - $\Omega_{\rm K} = -0.010 \pm 0.010$ (stat) ± 0.005 (sys)
 - $w = -1.001 \pm 0.07$ (stat) ± 0.08 (sys)

Cosmological results No changes compared to previous data sets

Kowalski et al. 2008

Systematics table

Wood-Vasey et al. 2007

Table 5. Potential Sources of Systematic Error on the Measurement of w

Source		dw/dx	Δx	Δ_w	Notes		
Phot. errors from astrometric unc	ertainties of faint objects	0.005 mag 0.1 Kowalski et al. 2008					
Bias in differential image photor	Source		common		sample-dependent		
Photometric zeropoint difference			(mag)		(1	\max)	
Zeropoint offset between low and	$\alpha \& \beta$ correction		0.015		_		
K-corrections	Contamination		_		0.015		
Filter passband structure Lightcurve		nodel 0.0				-	
Galactic extinction	Zero point		0.021		0.021		
Host-galaxy R_V	Malmquist bias		-		0.020		
Intrinsic color of SNe Ia	Gravitational lensing		_		0.009^{*}		
Malmquist bias/selection effects	_{fects} Galactic extinction		0.013		-		
SN Ia evolution	Total in mag		$\Delta M = 0.040$		$\Delta M_i = 0.033$		
Hubble bubble $1/\sqrt{N}$ ($-$ 0.01 $ -$ 0.021 $ -$							
Gravitational lensing Crav. dust		$1/\sqrt{N}$ / m 1 / mag	0.01 mag	< 0.0	UI HOIZ & I	$\operatorname{Imder}(2005)$	
Subtotal w/o extinction+color		т / ша <u>д</u>	0.01 mag	0.01			
Total				0.13			
Joint ESSENCE+SNLS comparison ····				0.02	photome	tric system	
Joint ESSENCE + SNLS total				0.13			

Caveat

All cosmological interpretations make use of the same local sample!

Systematics of the local sample could be a problem (local impurities in the expansion field, e.g. 'Hubble bubble')

Time variable ω?

Comparison to other models

Davis et al. 2007

The SN Ia Hubble diagram

Powerful tool to

- establish SNe Ia as good distance indicators
- measure the absolute scale of the universe (H_0)
- determine the amount of dark energy
- measure the equation of state parameter of dark energy

– current best results are consistent with w=-1

- Accelerating expansion of the universe appears very safe by now
- Time-variable ω will be difficult to determine, unless another breakthrough in distance determinations can be achieved
- Current SN experiments find a ω consistent with a cosmological constant