

Introduction

- How to Polarize Electrons:
 - Use radiative polarization:
 - Sometimes emission of a photon induces spin flip. The slight difference in probability between parallel and antiparallel to the *B*-field causes a net polarization built-up: Sokolov-Ternov effect.

$$\tau_{p}^{-1} = \frac{5\sqrt{3}}{8} \frac{\lambda_{e}}{2\pi} r_{e} c \gamma^{5} \left\langle \frac{1 - \frac{2}{9} (\hat{n} \cdot \vec{s}) + \frac{11}{18} \vec{d}^{2}}{\rho^{3}} \right\rangle$$

(DKM formula)

- Inject already polarized electrons:
 - In a planar ring, the polarization vector ("spin") precesses (mostly) about the vertical guide field => inject vertically polarized beam
 - The above mentioned radiative (de-)polarization effect still applies.

U. Wienands. SLAC-ASD SuperB IRC Review 29-Apr-08

Introduction (cont'd)

- Polarization build-up time for SuperB:
 - HER: γ = 13700 (7 GeV), ρ = 110 m, R = 263 m: 5...6 h
- > inject polarized electrons into HER.
 - A polarized source of 15 nC/sec is needed to maintain beam current in the SuperB HER. Sources like this are available The SLC gun e.g. delivers 15 nC=1E11 e⁻/pulse at 120 Hz (≈2 µA). Polarization can be up to 90%.
- Polarized positrons would require a polarized positron source. This is not a part of the Super*B* proposal at present.

 $G=(g-2)/2\approx 0.0012,$ $\gamma G(7 \text{ GeV}) \approx 16,$ for electrons

U. Wienands, SLAC-ASD SuperB IRC Review 29-Apr-08

• Stable spin direction

- $\hat{n}=\hat{n}(s)$ is the closed solution for the spin motion around the ring. A polarization vector $\vec{P} \parallel \hat{n}$ remains stationary turn after turn. \hat{n} is usually close to vertical due to the vertical guide field.
- "spin tune", $=\gamma G$ for a flat ring, # spin precessions per turn.
- To maintain polarization need to watch the quantity \vec{d} in the DKM formula. It quantifies the variation of the \hat{n} -axis with momentum: $\vec{d} = \gamma \frac{d\hat{n}}{dy}$

Large values of \vec{d} cause radiative *depolarization*.

d becomes non-zero due to horizontal field components in the ring (vertical orbit & correctors, detector solenoid, vertical betatron oscillations). *d* tends to large values at spin tune near integer values.

SuperB IRC Review 29-Apr-08

s (m)

Polarization with Rotators

- Solenoid Rotators:
 - A pair of *antisymmetric* rotators will be spin matched
 - True for all beam energies, but only for compensated detector sole.
 - Small depolarizing effect from non field-aligned spins in IR
 - A pair of symmetric rotators will not be spin matched
 - Adds a net rotation, which has no effect *on* energy, but does have an effect *off* energy since $d = \left| \gamma \frac{d\hat{n}}{d\gamma} \right|$ is $\neq 0$ (it is about 1.5...2). This may (will) reduce polarization achievable.

• The dipole rotator shown earlier is spin matched.

• Like the symmetric solenoid rotators it adds rotation, but *d* stays 0.

• May have somewhat more intrinsic depolarization from the dipoles than the sollenoid rotator, but likely to be still small effect.

U. Wienands, SLAC-ASD SuperB IRC Review 29-Apr-08

Expected Polarization (HER)

 With trickle injection, equilibrium between decay of stored beam and build-up due to injection

$$P = P_{inj} \frac{\tau_{pol}}{\tau_{pol} + \tau_{stor}} + P_{eq} \frac{\tau_{stor}}{\tau_{pol} + \tau_{stor}}$$

- For HER, assume τ_{stor} is 1 h (low current, no collisions)
 - optimal spin match $(\tau_{pol} = 5...6 \text{ h}): P \ge 0.85^* P_{inj}$
 - symmetric solenoid rotator ($d \approx 1.6$, $\tau_{pol} \approx 2$ h): $P \ge 0.67 * P_{inj}$
- For HER at full collision τ_{stor} is 5 m (<0.1 h), $P \ge 0.95...0.98 * P_{inj}$
- These estimates assume $P_{eq} = 0$. The symmetric solenoid rotator case benefits most from $P_{eq} > 0$.

Resonant Energies

- At integer values of the spin tune, the \hat{n} -axis rotates into the horizontal plane
 - longitudinal polarization @ IP -> 0.
 - *d* becomes large => depolarization.
- This happens every 0.441 GeV near γG = integer.
- The width of these depolarizing resonances depends on the degree of spin matching achieved.

- Beyond these integer spin resonances, there are other effects limiting the energy choice:
 - "intrinsic" resonances, where $k^* v_{spin} = v_y$
 - in case of SuperB $v_y \approx 0.5 \Rightarrow$ halfway between integer resonances in energy \Rightarrow more restrictive.
 - synchrotron satellites to all of these resonances, which effectively increases the width of each resonance.
- Ignoring any shift from the rotators, the *bad* energies would be 6.830, 7.050 and 7.271 GeV.
 - Corresponding LER energies (for E_{cm} =10.58 GeV) are 4.091, 3.969, 3.848 GeV.

• How sensitive will the plane-twister quad settings be?

