

U. Wienands, SLAC-ASD SuperB IRC Review 29-Apr-08





## Magnet Counts, Opt. Lattice

• Dipoles

| L <sub>dipole</sub> (m) | 0.45 | 5.4 |
|-------------------------|------|-----|
| PEP-II Total            | 194  | 194 |
| SuperB Total            | 224  | 148 |
| Needed                  | 30   | 0   |

• Quadrupoles

| L <sub>quad</sub> (m) | 0.56 | 0.73 | 0.43 | 0.7 | 0.4 |
|-----------------------|------|------|------|-----|-----|
| PEP-II Total          | 202  | 82   | 353  | -   | -   |
| SuperB Total          | 253  | 216  | 165  | 4   | 4   |
| Needed                | 51   | 134  | 0    | 4   | 4   |

#### • Sextupoles

| L <sub>sext</sub> (m) | 0.25 | 0.5 |
|-----------------------|------|-----|
| PEP-II Total          | 188  | -   |
| SuperB Total          | 372  | 4   |
| Needed                | 184  | 4   |

U. Wienands, SLAC-ASD SuperB IRC Review 29-Apr-08



### **Magnet Field Tolerances (HER)**

\_

|                    | Multipole index(n)         | Systematic: $b_n$   | Random: $b_n$              |
|--------------------|----------------------------|---------------------|----------------------------|
|                    | dipole magnet: $(r=0.03m)$ |                     |                            |
|                    | 3                          | $1.00 \ge 10^{-5}$  | $3.20 \ge 10^{-5}$         |
|                    | 4                          | -                   | $3.20 \ge 10^{-5}$         |
|                    | 5                          | -                   | $6.40 \ge 10^{-5}$         |
|                    | 6                          | -                   | $8.20 \ {\rm x} \ 10^{-5}$ |
|                    | quadrupole: $(r=0.0449m)$  |                     |                            |
|                    | 3                          | $1.03 \ge 10^{-3}$  | $5.60 \ge 10^{-4}$         |
|                    | 4                          | $5.60 \ge 10^{-4}$  | $4.50 \ge 10^{-4}$         |
|                    | 5                          | $4.80 \ge 10^{-4}$  | $1.90 \ge 10^{-4}$         |
|                    | 6                          | $2.37 \ge 10^{-3}$  | $1.70 \ge 10^{-4}$         |
|                    | 10                         | $-3.10 \ge 10^{-3}$ | $1.80 \ge 10^{-4}$         |
|                    | 14                         | $-2.63 \ge 10^{-3}$ | $7.00 \ge 10^{-5}$         |
|                    | sextupole: $(r=0.05652m)$  |                     |                            |
|                    | 5                          | -                   | $1.70 \ge 10^{-3}$         |
|                    | 7                          | -                   | $1.80 \ge 10^{-3}$         |
| - <mark>ASI</mark> | 9                          | $-1.45 \ge 10^{-2}$ | -                          |
| 29-1               | 15                         | $-1.30 \ge 10^{-2}$ | -                          |

U. Wienands, SLAC-ASI SuperB IRC Review 29-



# **Magnet Field Tolerances (LER)**

| Multipole index(n)         | Systematic: $b_n$   | Random: $b_n$              |
|----------------------------|---------------------|----------------------------|
| dipole magnet: $(r=0.03m)$ |                     |                            |
| 3                          | $-0.50 \ge 10^{-4}$ | $1.00 \ge 10^{-4}$         |
| 5                          | $3.00 \ge 10^{-4}$  | $1.00 \ge 10^{-4}$         |
| 7                          | -                   | $1.00 \ge 10^{-5}$         |
| 9                          | -                   | $1.00 \ge 10^{-5}$         |
| quadrupole: $(r=0.05m)$    |                     |                            |
| 3                          | $1.02 \ge 10^{-4}$  | $4.63 \ge 10^{-5}$         |
| 4                          | $1.91 \ge 10^{-4}$  | $8.09 \ge 10^{-5}$         |
| 5                          | $1.89 \ge 10^{-5}$  | $8.86 \ge 10^{-6}$         |
| 6                          | $5.69 \ge 10^{-4}$  | $2.80 \ {\rm x} \ 10^{-5}$ |
| 7                          | $6.60 \ge 10^{-6}$  | $3.45 \ge 10^{-6}$         |
| 8                          | $9.60 \ge 10^{-6}$  | $5.72 \ge 10^{-6}$         |
| 9                          | $7.14 \ge 10^{-6}$  | $3.85 \ge 10^{-6}$         |
| 10                         | $3.37 \ge 10^{-4}$  | $5.62 \ge 10^{-6}$         |
| 11                         | $6.08 \ge 10^{-6}$  | $3.32 \ge 10^{-6}$         |
| 12                         | $5.34 \ge 10^{-5}$  | $6.20 \ge 10^{-6}$         |
| 13                         | $1.10 \ge 10^{-5}$  | $6.53 \ge 10^{-6}$         |
| 14                         | $6.65 \ge 10^{-5}$  | $8.20 \ge 10^{-6}$         |

U. Wienands, SLAC-ASD SuperB IRC Review 29-Apr-(







| SuperB                                     | <b>Quad/Sext Alignment Sensitivities</b>   |                       |                       |            |            |
|--------------------------------------------|--------------------------------------------|-----------------------|-----------------------|------------|------------|
|                                            |                                            | Super <i>B</i><br>LER | Super <i>B</i><br>HER | ILC<br>DRs | KEK<br>ATF |
|                                            | Vertical emittance (pm)                    | 4                     | 4                     | 2          | 4.5        |
|                                            | Orbit amplification factor                 | 46                    | 44                    | 32         | 21         |
| rms, causing orbit<br>equal to y beam size | Quadrupole jitter sensitivity (nm)         | 209                   | 217                   | 221        | 227        |
| rms, causing 4 pmr<br>y emittance          | Sextupole alignment sensitivity ( $\mu$ m) | 95                    | 87                    | 70         | 50         |
| rms, causing 4 pmr<br>y emittance          | Quadrupole tilt sensitivity ( $\mu$ rad)   | 166                   | 183                   | 79         | 800        |
| U. Wienands, SLA                           | C-ASD                                      |                       |                       |            |            |

SuperB IRC Review 29-Apr-08



#### **<u>Compare to PEP-II</u>**

• Example: Emittance from vertical dispersion:

$$\varepsilon = \frac{2J_{\varepsilon}}{J_{y}} \frac{\left\langle D_{y}^{2} \right\rangle}{\beta_{y}} \sigma_{\delta}^{2}$$

• => for 4 pmr need  $D_y < 4$  mm

- roughly a factor of 10 better than PEP-II
  - PEP-II was spec'd at 250  $\mu$ m rms
  - > SuperB should aim near 25  $\mu$ m rms... challenge
    - ... but LCLS at SLAC achieves this with vibrating wire.
  - Better correction algorithms may relieve this somewhat

