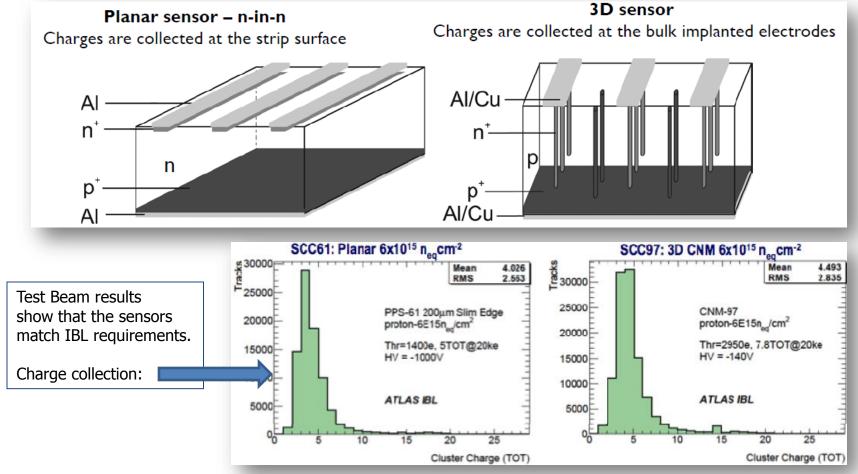
IBL Report

C. Gemme - INFN Genova

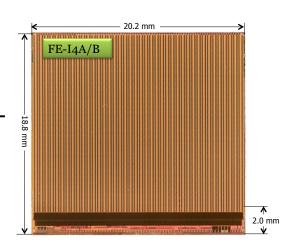

ATLAS Italia – 17/5/2012, Milano

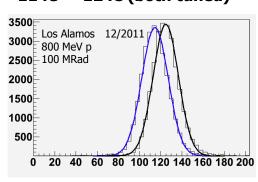
Inputs da M.Citterio, S.Coelli, G.Darbo, A.Gabrielli, C.Meroni, P.Morettini

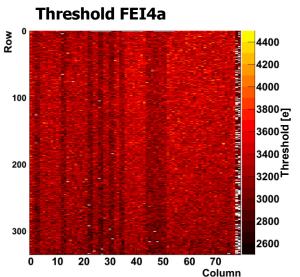
- ✓ IBL: Stato del progetto
 - Moduli: sensori, elettronica, ibridizzazione, module flex
 - Stave, flex, integrazione
 - Servizi: PP2 e ROD
- Richieste finanziarie

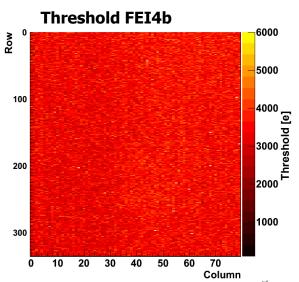
Sensors

- ✓ Production Status assuming 75% planar and 25% 3D
 - Planar sensors from CiS: 424 good double chip (DC) tiles (89.1 % yield) IBL needs 168
 - 3D sensors from CNM and FBK: 306 good tiles as today (62% yield) IBL needs 112

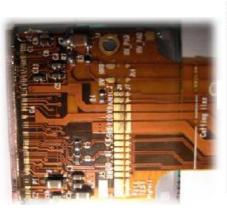

17/05/2012 IBL Report

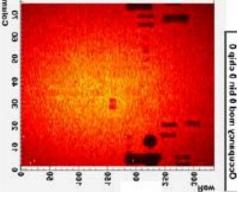

Electronics

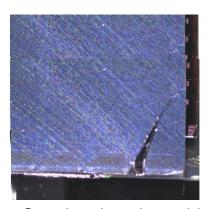



- ✓ First version FEI4a for validation and IBL prototypes (32 FE-I4A wafers received in 2010/11)
- ✓ FEI4b features: minor fixes + r/o functionalities + uniform pixel matrix + Power functionality
- ✓ First FEI4b delivery in Dec. 2011
- ✓ FEI4b now in production (30 wafers) and wafer probing is almost completed (yield ~60%)

FEI4b noise before and after irradiation: 114e → 124e (both tuned)

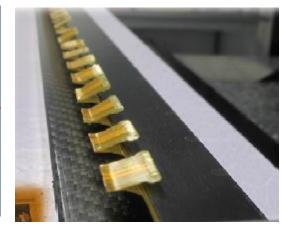

Bump-Bonding — Thin Modules




- ✓ 125 modules built at IZM using FEI4a; assembled (glue hybrid and wirebond) and qualified in two assembly sites (Genova/Bonn)
- ✓ Thin module prototypes (100 and 150 um thick electronics):
 - Thin module process steps: 1 FE-I4 wafers thinned 2 glued on glass support wafer 3 bump deposition 4 dicing wafer & substrate 5 flip-chip & reflow 6 substrate wafer removal by power laser.
 - Some cracks during the process of laser release of the substrate.
 - mainly in 100µm thin modules
 - Decided to go to 150µm thick chips for IBL module production (safety)

Module flex design is being finalized for the final submission (Genova).

Module PRR 6-7 June2012

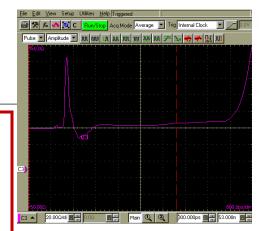

Cracks developed in the FE-I4 back side

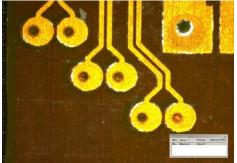
Am source scan SMDs visible

Staves

- Staves are Made of carbon foam with a K13C omega, a faceplate and a Ti pipe of 1.5 mm ID and 0.1 mm wall thickness for cooling.
- ✓ Stave Production has started and 6 staves have already been delivered for module loading.
 - Planned to produce 33 staves → load 24 (14 needed for IBL).

EXPERIMENTAL MEASUREMENT OF THE STAVE DEFORMATION INDUCED BY THE COOLING

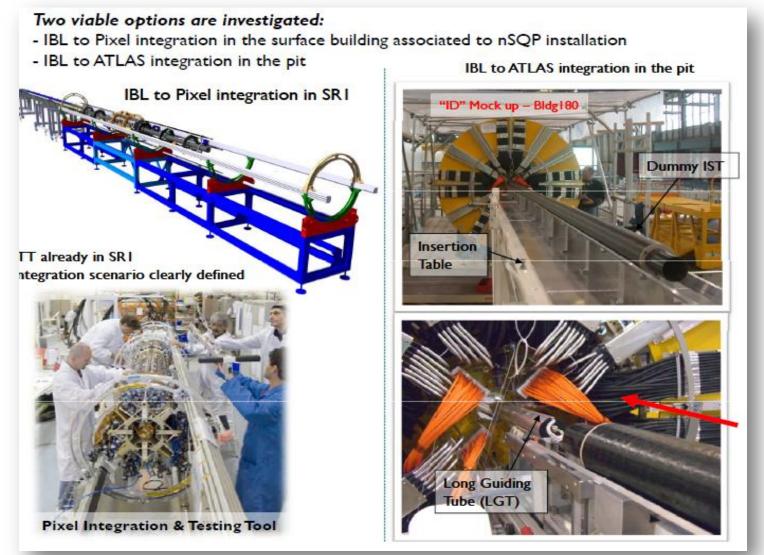

TEST OF INFRARED TRANSPARENT MATERIALS FOR THERMAL IMAGE TAKEN USING A I.R. CAMERA (FLIR)


TEST BOX INSTALLED IN THE LASA METROLOGY LAB. COOLED USING NITROGEN. OPTICAL MEASUREMENT OF THE STAVE DISPLACEMENT IN SEVERAL POINTS CONSTRAINS ATTACHED TO INVAR REFERENCE BAR TEMPERATURE THERMORESISTANCE PT100 SENSORS

L Report

Flex

- GE
- Mix of 4 Cu-layers and 2 Al-layers for the LV lines. Total thickness ~450 um. Special fabrication for the Al-Cu vias.
- ✓ Folded Wings to provide connectivity to the FEs.
- ✓ 6 prototype sets delivered in March. Test in Ge, Slac, Mi.
 - Test in Genova to validate layout. Critical the Al/Cu vias and maintain low resistivity on the LV lines. 20% higher than expected →vias to be improved.
 - Full production, minor modifications on the Al-Cu vias, will <u>restart in few days</u>.


First prototype of stave with flex is being assembled in these days. Real stave, services, FEI4a modules.

Assembled stave PRR In July.

- 1	Lauras Namas	Tues	Administra	Thistogram (cost)
	Layer Name	Type	Material	Thickness (um)
	Coverlay	Dielectric	KAPTON	12.5
	coveriay	Dielectric	GLUE	12.5
	TOP (HV)	Conductor	Copper	19
Œ		Dielectric	Pyralux 25 µm	25
	LVDS2	Conductor	Copper	18
	GLUE (1)	Dielectric	GLUE	25
	GLUE 💛	Dielectric	GLUE	25
	GND1	Conductor	Copper	5
C	2	Dielectric	Pyralux 75 µm	75
	LVDS1	Conductor	Copper	19
	GLUE	Dielectric	GLUE	25
	(2)	Dielectric	Kapton 25 µm	25
	GLUE 💙	Dielectric	GLUE	25
	Aluminium	Plane	Aluminium	50
	GLUE			
	Al)	Dielectric	Kapton 12.5 μm	from 40 to 60
	GLUE			
	Aluminium	Plane	Aluminium	50
	Councilous	Distance in	GLUE	12.5
	Coverlay	Dielectric	KAPTON	12.5

Installation

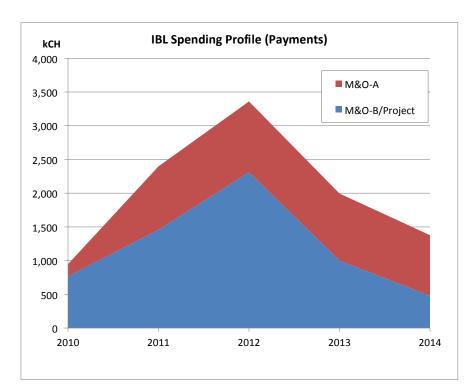
Decision if to extract the Pixel package to change the services panels (nSQP) will be taken on 12-13 June review!

ATLAS PIXEL DETECTOR INTEGRATION AND TESTING TOOL (ITT) MARCH 2012 SET-UP INTO CERN CLEAN ROOM SR-1

- ✓ The PP2 crate overall "concept" is kept from the Pixel Detector. The IBL PP2 crate is logically divided in two parts:
 - The voltage regulation (VDD and VVDC)
 - The patch panel for HV (NEW wrt to Pixel) and DCS
- ✓ Most of the electrical boards of which the crate is made are re-designed towards an IBL optimization
 - INPUT Board
 - Output ("BUS") Board
 - Regulator cards (motherboard and daughterboard)
 - → Prototyping Fall 2012, production late 2012/Early 2013
- ✓ The PP2 Control Board (FPGA and ELMB based) stay the same. The ST voltage regulators are used for the IBL regulator boards..
- ✓ In discussion possible splitting of LV power supply to multiplicity 1 instead of 7.

Prototypes:

- ROD minor problems on the first batch are now fixed on the second batch of 5 boards (Bo),
- Current batch of 5 boards have been designed and extensively tested (Bo): till now these tests are OK,
- To allow a parallel ROD firmware development, 3 boards have been temporarily shipped to Wuppertal, Mannheim and Goettingen,
- Setting up a complete data acquisition system: on-detector electronics, optolink, formatting, histo → ready by end of June in SR1 at Cern with boards from Germany.
- Next production foreseen by Summer.
- ✓ Studying ROD compatibility
 With other systems. To be investigated:
 - Diamond Beam Monitor
 - - ATLAS Forward Physics
 - Other ATLAS pixel/SCT layers


17/05/2012 IBL Report

MoU - Spending Profile (annex 5)

Definite MoU

- spending profile considers speed-up IBL schedule
- 2012 value matches CERN-RRB-2012-028 Table 2 (24 April 2012)
- Note: spending profile does not matches

IBL Payment Profile

M&O-A
M&O-B/Project
Total including DBM

2010	2011	2012	2013	2014	Total
180	940	1 050	995	900	4 065
767	1 457	2 310	1 000	478	6 012
947	2 397	3 360	1 995	1 378	10 077

Finanziamenti 2012-13

- ✓ Mancano le coperture delle pledges (debiti CERN) e il resto dei MOF-A
 - MOF-A mancanti: 126 kCHF (354 totale -228 ass. 2011)

728

15

513

- Pledges: 230 kCHF (55+15 FEI4B + 60 Bump bonding +100 sensori)
- ✓ Alcuni extra costi:

2112

SUM

- PP2 (ass. 30) e Stave Flex (ass. 40), stima dei costi on-going. Stave (già finanziato). Verifica se possono essere coperti da risparmi su altre voci.
- Per i referee della CSN1 il progetto (a parte quanto sopra) è (quasi) completamente finanziato.
- Su ROD, PP2, HV/LV PS ci aspettiamo contributo da istituti DBM (da quantificare).

				finanza					descrizione
Anno		sez	сар	ric	ric-sj	ass	ass-sj	tipologia (MoU)	
2012	Sep-11	ВО	con	5		5		A1.6	schede demo e componenti
2012	Sep-11	ВО	inv	4		4		A1.6	2 PC linux
2012	Sep-11	ВО	арр	150		150		A1.6	produzione 20 schede ROD
2012	Sep-11	GE	арр	55				A1.2	Produzione FEI4-B (12%) - ANTICPO DAL CERN
2012	Sep-11	GE	арр		15			A1.2	Produzione FEI4-B (12%) batch aggiuntivo - ANTICPO DAL CERN
2012	Sep-11	GE	арр	95		95		A1.7 (MOF-A)	HV power supply - riconosciuto come MOF-A
2012	Sep-11	GE	арр	40		40		A1.8 (MOF-A)	Infrastruttura DAQ per System Test - riconosciuto come MOF-A
2012	Sep-11	GE	арр	25		25		A1.5	Produzione moduli
2012	Sep-11	GE	арр	40		40		A1.5	Produzione FLEX
2012	Sep-11	MI	con	5		5		A1.6	USB pix per lettura multimoduli
2012	Sep-11	MI	арр	30		30		A1.6	crate PP2 e preproduzione 10 schede
2012	Sep-11	MI	арр	55		55		A1.7 (MOF-A)	LV Power Supply - riconosciuto come MOF-A
2012	Sep-11	MI	con	30		30		A1.4	extra costi stave production
2012	Sep-11	MI	con	90		30		A1.3	bump bonding - 60 kEu ANTICIPO DAL CERN
2012	Sep-11	UD	con	100				A1.1	produzone sensori - ANTICPO DAL CERN
2012	Sep-11	TN	con	4		4		A1.1	probe card

Richieste ME 2013

✓ Pixel

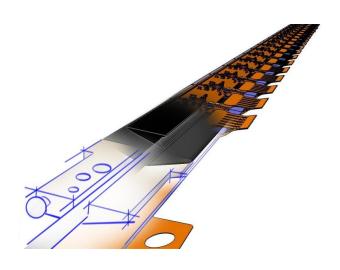
- Consolidation of the services
- Integration of 4° layer in the software
- Much more work if Pixel is bring on surface. But no direct involvement for the Italian groups.

FTE: ~12 mesi

✓ IBL

- follow up delle delivery dai laboratory, moduli e flex.
- integrazione del detector in Geneva (moduli su stave) e poi Cern (stave attorno alla beam pipe, connessione ai servizi elettrici e raffreddamento)
- electrical, mechanical test in superficie
- stretta collaborazione BO-GE per lo sviluppo SW-HW per l'integrazione nuovi ROD nel sistema di DAQ
- Preparazione nel pozzo all'inserimento + installazione nuovi servizi (PP2)

FTE: ~18-24 mesi


AoB

- ✓ Addendum to *ATLAS IBL TDR of* September 2010 just out:
 - https://edms.cern.ch/document/ 1217596/1.6
 - Covering the accelerated schedule, sensors mixed scenario, the module flex, Stave integration, the beam diamond telescope.
 - ATLAS Approval and send to LHCC in June
- ✓ First Paper out for comments on CDS: Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip
 - http://cdsweb.cern.ch/record/1 447066

Insertable B-Layer

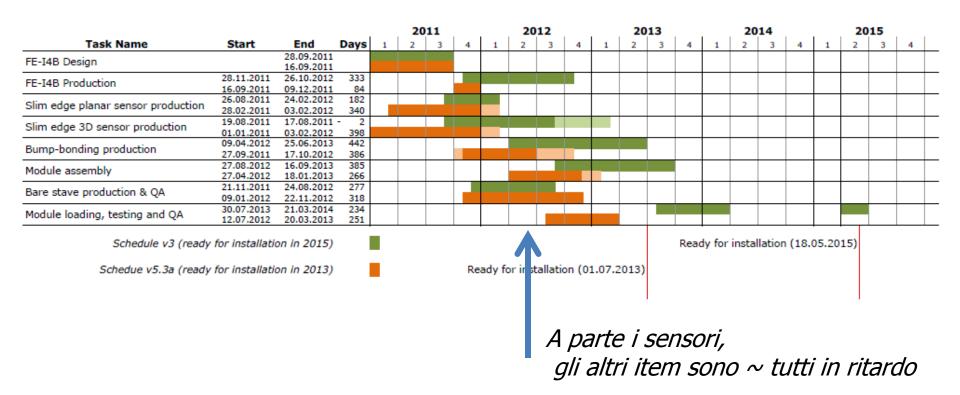
Technical Design Report Addendum

Issue: Revision:

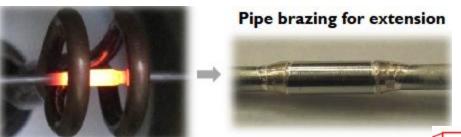
Reference: ATLAS TDR 19 Addendum, CERN/ LHCC 2012-xxx

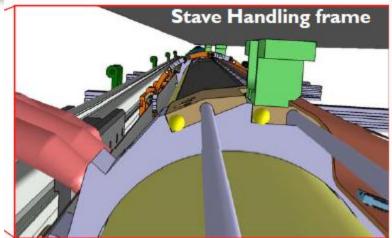
Created: 1 March 2012 Last modified: 11 May 2012

Prepared By: ATLAS IBL Community


Spares

Schedule


✓ New schedule is being updated in these days. Pixel package extraction for services replacement could have an impact on it.


Stave Integration

- Modules loaded in Geneva, wirebonded to the flex wings and fully qualified.
- Once staves are ready integration of the cooling pipes is done at Cern and arrangement of the staves around the beampipe is done.

MoU & RRB Tables

- ✓ Payment table (CERN-RRB-2012-028)
 - Recognized 475 kCHF till 2011
 - For 2012 expected 407 kCHF (of which 220kCHF from open commitments)

Desired (FA)	Contributions: plan 2012							
Project (FA)	2010-11 2012-tot		2010-12	MoU ref.				
	kCHF	kCHF	kCHF	kCHF	%			
Canada	40	52	92	100	91.5			
Czech Republic	27	0	28	27	101.7			
France IN2P3	316	140	456	576	79.2			
Germany BM BF	467	450	917	1 2 2 5	74.9			
Germany DESY	-	50	50	72	69.1			
Germany MPI	11	-	11	-				
Italy	475	407	882	1 047	84.3			
Japan	-	71	71	92	76.9			
Netherlands	172	23	195	211	92.5			
Norway	12	57	69	73	95.3			
Slovenia	65	30	95	88	108.5			
Spain	-	108	108	132	81.6			
Switzerland	210	260	470	830	56.6			
Taipei	-	-	-	41	-			
United Kingdom	14	93	106	106	100.0			
US DOE & NS F	303	320	622	846	73.6			
CERN	111	249	360	546	66.0			
Total	2 223	2 310	4 533	6 012	75.4			