Universal Extra Dimensions and

its signature @ the LHC

Anindya Datta, University of Calcutta, INDIA.

 University La Sapienza and INFN-Rome I

 7th JUne 2012

First of all why should we look beyond 1 + 3 ?

Strong motivations come from the theories which try to incorporate gravity in a quantum theory.

Some of the models offer interesting solutions to some long standing problems : hierarchy, darkmatter, cosmological constant.

UED for example, provides DM, unification at a testable scale, prediction for number of fermion generations, naturally long proton life time....

Plan of this talk...

- *** UED : Boundary conditions/ Orbifolding and spectra**
- *** Radiative corrections**
- *** New search strategies for mUED @ LHC**
- *** Boundary Localised Kinetic Terms**
- *** QED with BLKT**
- *** Predictions @ the LHC ?**
- *** Summary and Outlook....**

Based on : arXiv : 1205.4334 (hep-ph)1 Ujjal Dey, Avirup Shaw, Amitava Raychaudhury & Phys.Lett. B712 (2012) Amitava Datta, Sujoy Poddar **Universal Extra Dimension : in a nutshell**

SU(3) x SU(2) x U(1) gauge field theory in 4 + 1 dimensions

 **** Extra space like dimension is of finite size (2πR) Gauge, Higgs and Yukawa : negetive mass dimension An effective theory valid upto a scale Λ**

As usual apply KK-reduction on 5D fields :

 **** Apply periodic b.c. on 5d fields at y = 0 and y = 2π^R**

$$
\Phi(x,y) = \frac{1}{\sqrt{2\pi R}} \sum_{0}^{\infty} \left[\phi_{+}^{n}(x)e^{\frac{iny}{R}} + \phi_{-}^{n}(x)e^{\frac{-iny}{R}} \right]
$$

Two infinite towers of KK-excitations **KK-number (n) : discretised momentum along y-direction conservation AIm : to identify n=0 mode particles and their interactions with SM

Problem with compactification on circle

Look at the 5d fermionic field :

 $\Psi(x,y) = \frac{1}{\sqrt{2\pi R}} \sum_{0}^{\infty} \left[\psi_{+}^{n}(x) e^{\frac{iny}{R}} + \psi_{-}^{n}(x) e^{\frac{-iny}{R}} \right]$

4 x 4 matrices Γ (γ , iγ) define the Clifford algebra in 1+4 dim. μ One cannot have a chirality operator in 1+4 dim. 5 M

Ψ(x,y) in 5D is 4 component:

 $\Psi^{\mathcal{Q}}_{-}$ of L and R chiral or one of them is Left and the other is right ***at n=0 presence of both Left and right chiral projection 0 0 _**

We would like to write SU(2) x U(1) gauge field theory in 5 dim

Suppose, Ψ is a member of SU(2) doublet of weak I-spin **'SM' in 4D effective theory contains of both L-and Rchiral SU(2) doublets

Saving the compactification:

Way out : Demand some extra symmetry

Action to be invariant under y → **-y**

Identify the (action at) points in upper half (0<y <πR) with (acion at) those points i *n* lower half (- πR < y < 0)

Effectively folding the full circle into a half-circle

Extra dimension is now restricted [0: π R]

Moving around 0- ↔ **0+ as well as πR +** ↔ **πR- is not smooth any more**

 $y = o$ and $y = \pi R : F$ ixed points on the orbifold

 Fashionable name for this : Orbifolding

Saving the compactification: (contd....)

Components of 5D fields are assigned with a quantum number called KK-parity

$$
\Phi_\alpha(x,-y)=\pm\Phi_\alpha(x,y)
$$

All scalars, gauge and fermions whose 0-mode corresponds to any SM field are assigned with KK-parity +1

Operationally same as restricing the boundaries of y-direction from [0: πR] and imposing Neumann or Dirchilet b.cs.

Odd KK-parity : Φ (x, y =0) = Φ (x, y = πR) = 0

Even KK-parity : $\partial_y \Phi$ (x, y) $|_o = \partial_y \Phi$ (x, y) $|_{\pi \mathbb{R}} = o$

Solving the compactification:

And how the fields look like after imposing b.c.s/orbifolding:

$$
A_{\mu}(x,y) = \frac{\sqrt{2}}{\sqrt{2\pi R}} A_{\mu}^{0}(x) + \frac{2}{\sqrt{2\pi R}} \sum_{n=1}^{\infty} A_{\mu}^{n}(x) \cos \frac{ny}{R},
$$

\n
$$
A_{5}(x,y) = \frac{2}{\sqrt{2\pi R}} \sum_{n=1}^{\infty} A_{5}^{n}(x) \sin \frac{ny}{R},
$$

\n
$$
\phi(x,y) = \frac{\sqrt{2}}{\sqrt{2\pi R}} \phi^{0}(x) + \frac{2}{\sqrt{2\pi R}} \sum_{n=1}^{\infty} \phi^{n}(x) \cos \frac{ny}{R},
$$

\n
$$
Q_{i}(x,y) = \frac{\sqrt{2}}{\sqrt{2\pi R}} \Biggl[\binom{u_{i}(x)}{d_{i}(x)} \Biggr]_{L} + \sqrt{2} \sum_{n=1}^{\infty} \Biggl[\mathcal{Q}_{iL}^{n}(x) \cos \frac{ny}{R} + \mathcal{Q}_{iR}^{n}(x) \sin \frac{ny}{R} \Biggr] \Biggr]
$$

\n
$$
U_{i}(x,y) = \frac{\sqrt{2}}{\sqrt{2\pi R}} \Biggl[u_{iR}(x) + \sqrt{2} \sum_{n=1}^{\infty} \Biggl[U_{iR}^{n}(x) \cos \frac{ny}{R} + U_{iL}^{n}(x) \sin \frac{ny}{R} \Biggr] \Biggr],
$$

\n
$$
\mathcal{D}_{i}(x,y) = \frac{\sqrt{2}}{\sqrt{2\pi R}} \Biggl[d_{iR}(x) + \sqrt{2} \sum_{n=1}^{\infty} \Biggl[\mathcal{D}_{iR}^{n}(x) \cos \frac{ny}{R} + \mathcal{D}_{iL}^{n}(x) \sin \frac{ny}{R} \Biggr] \Biggr],
$$

Summary : Infinite copies (for each n) of the (almost) SM

KK-number to KK-parity

Space along y-direction is restricted at y =0 and y = πR, Momentum conservation along y-direction is lost.

As -πR ≤ y ≤0 is identified with πR ≥ y ≥ 0, the residual $symmetry$ is $y \rightarrow y + \pi R$.

Any 5D field at nth level has (-1) under this symmetry. This is evidnt as the y-dependent functions are either cos or sin . n

Interactions : KK-parity conservation

 KK-parity conservation implies algebraic sum of KKparities of the particles in the vertex should add up to a even integer. (Similar to R-parity in SUSY)

SM particle (n=0) can only couple to a pair of n =1 KKparticle.

The lightest KK (n=1) particle is thus stable. Possible DM !!

Radiative Corrections ? Why?

Tree level mass for nth kk-mode : $\mathbf{E}^2 = \mathbf{p}^2 + \mathbf{p}^2 + \mathbf{p}^2 + (\mathbf{p}^2 + \mathbf{m}^2)$ **4 2 1 2 3 2**

Consider the decay f → **f γ 1 0 1**

$$
(m_{e^{\perp}} - m_{\gamma^{\perp}}) / m_{e^{\perp}} < \alpha_{\text{EM}}^2
$$

Radiative corrections are extremely important !!

⇓

Radiative Corrections ? How?

Prescription : Georgi, Grant and Hailu, PLB506 (2001)

In momentum space : Two distinct kinds of terms ** |p5| conserving

$$
\sum_{k_5,k'_5} \frac{d^{D_k}}{(2\pi)^D} \frac{k + i\gamma_5 k_5}{(k^2 - k_5^2)[(p - k)^2 - (p_5 - k_5)^2]} \left\{ \delta_{p_5p'_5} + \delta_{p_5-p'_5} \gamma_5 - \delta_{2k_5,(p_5+p'_5)} - \delta_{2k_5,(p_5-p'_5)} \gamma_5 \right\}
$$

 \Rightarrow $\sum \overline{\psi}(p, p_5) \Gamma \psi(p, p_5')$ $(\delta(x_5) + \delta(L - x_5)) \overline{\psi}(x, x_5) \Gamma \psi(x, x_5)$ $p_5 = p'_5 + 2\pi n/L$

Back in co-ordinate space : Bulk Corrections (p5 conserving) Brane corrections (p5 violating)

**** Brane bound terms are logarithmically divergent: corrections are sensitive to cut off Λ only via Log..**

Radiative Corrections ...More...

Contributions to radiative corrections from the energy scale above Λ are completely unknown ...

❉ ❉ **mUED : the contribution above Λ is parametrised in such a way that total contribution at Λ vanishes..**

Similar to choosing m0 =0 in mSUGRA

mUED @ LHC

****Signature : m jets + n leptons + missing energy**

1 hard jet + 2/3/4 leptons + missing energy @ lHC 14 TeV Bhattacharyya, AD, Majee, Raychaudhury NPB 821 (2009)

2b-jets + 2- leptons + missing energy @ lHC 14 TeV Choudhury, AD, Ghosh, JHEP 1008 (2010)

jets + missing energy @ lHC 7 TeV Datta, AD, Poddar, PLB 712 (2012)

Reach in 1/R ~ 800 - 900 GeV **jets + missing energy @ lHC 7 TeV**

Large pair production cross-section for coloured n=1 KK-modes @ lHC 7 TeV

For 1/R = 500 GeV and ΛR = 20 $\mathbf{0} \approx 250$ pb

 $g + g \rightarrow g^* + g^*$ $g + q \rightarrow g^* + q_D^*$; $g^* + q_S^*$ $q_i + q_j \rightarrow q_{Di}^* + q_{Dj}^*$; $q_{Si}^* + q_{Sj}^*$ $g + g \rightarrow q_D^* + \bar{q}_D^*$; $q_S^* + \bar{q}_S^*$ $q + \bar{q} \rightarrow q_D^* + \bar{q}_D^*$; $q_S^* + \bar{q}_S^*$ $q_i + \bar{q}_j \rightarrow q_{Di}^* + \bar{q}_{Sj}^*$ $q_i + \bar{q}_j \rightarrow q_{Di}^* + \bar{q}_{Dj}^*$; $q_{Si}^* + \bar{q}_{Si}^*$ $q_i + q_j \rightarrow q_{Di}^* + q_{Si}^*$ $q_i + \bar{q}_i \rightarrow q_{Dj}^* + \bar{q}_{Dj}^*$

Unfortunately small mass seperations : softer jets and hence low MET events...

p spectrum of the jets T

Hadronisation, ISR,FSR by PYTHIA, PYCELL

This is normalised to 1, QCD, tt have long tail...

Cannot fight with SM (QCD, tt) with traditional weapons (p , MET, H)...

Few Event-shape variables come handy

SM background can be completely tamed using R_{+} < 0.8 and α_{+} > 0.6

Bottomline of this analysis :

**** Obtained so far the best mass reach at LHC for mUED 1/R > 900 GeV @ 7 TeV criteria : 20 signal events in a background free environment**

**** Very important : this analysis is equally applicable to LHC search to any model with compressed mass spectra...**

**** SUSY search should be relooked thro' event shape analysis**

Twist in the tale...

Minimality assumption can be evaded by parametrising the contribution above Λ, by treating them as free parameters

Equivalent to write all posible operators present at the classical action at the boundaries however with their co-efficients as free parameters...

Boundary Localised Kinetic Terms

Unknown UV completion can be the main motivation for adding boundary localised terms.

 One is allowed to add all possible Lorentz/ gauge invariant terms to the acion at the boundaries.
 Like adding the adding

Leads us to introduce a set of BLKTs (only) and investigate the so called non-minimal UED

R-terms / **in superpotential**

Life (UED) with BLKTs..

For warm up: confine ourselves with QED only...

Remember : ψ ψ are four component fields in 5D L Y R ^{$U1$} U V V \rightarrow

 $S=\int d^4 x\, dy \left[\bar{\Psi}_L i\Gamma^M \partial_M \Psi_L +r^a_f \delta(y) \phi_L^\dagger i\bar{\sigma}^\mu \partial_\mu \phi_L +r^b_f \delta(y-\pi R) \phi_L^\dagger i\bar{\sigma}^\mu \partial_\mu \phi_L \right.$ $+\bar{\Psi}_Ri\Gamma^M\partial_M\Psi_R+r^a_f\delta(y)\chi_R^\dagger i\sigma^\mu\partial_\mu\chi_R+r^b_f\delta(y-\pi R)\chi_R^\dagger i\sigma^\mu\partial_\mu\chi_R\Big]$ $+ \tfrac{1}{4} \int d^4 x \, dy \left[F_{MN} F^{MN} + r^a_\gamma \delta(y) F_{\mu\nu} F^{\mu\nu} + r^b_\gamma \delta(y-\pi R) F_{\mu\nu} F^{\mu\nu} \right]$ $+ \int d^4 x\, dy \left[e_5\, \bar{\Psi}_L i \Gamma^M A_M \Psi_L + e_4\left(r_f^a \delta(y) \phi_L^\dagger i \bar{\sigma}^\mu A_\mu \phi_L + r_f^b \delta(y-\pi R) \phi_L^\dagger i \bar{\sigma}^\mu A_\mu \phi_L \right) \right.$ $+e_5\,\,\bar{\Psi}_Ri\Gamma^M A_M\Psi_R+e_4\left(r_f^a\delta(y)\chi_R^\dagger iA^\mu\partial_\mu\chi_R+r_f^b\delta(y-\pi R)\chi_R^\dagger i\sigma^\mu A_\mu\chi_R\right)$

A has 5 commponents, choose A = 0 (gauge choice) 4 KK-expansion of the

KK-expansion of ➔ **the photon** ➔

$$
A_{\mu}(x,y) = \sum_{n=0}^{\infty} A_{\mu}^{(n)}(x) a_n(y)
$$

$$
\Psi_L(x,y) = \begin{pmatrix} \phi_L(x,y) \\ \chi_L(x,y) \end{pmatrix} = \sum_n \begin{pmatrix} \phi_n(x)f_L^n(y) \\ \chi_n(x)g_L^n(y) \end{pmatrix}
$$

$$
\Psi_R(x,y) = \begin{pmatrix} \phi_R(x,y) \\ \chi_R(x,y) \end{pmatrix} = \sum_n \begin{pmatrix} \phi_n(x)f_R^n(y) \\ \chi_n(x)g_R^n(y) \end{pmatrix}
$$

➴

*****Aim is to find the y-dependence of a(y), f(y) and g(y)*****

fermions

➚

Equations of motions in y and their solutions... **Variation of S w.r.t the 5D fields and then seperating the variables x and y $\begin{split} &\left[1+r^a_f\delta(y)+r^b_f\delta(y-\pi R)\right]m_nf^n_L-\partial_yg^n_L=0,\ \ m_ng^n_L+\partial_yf^n_R=0\\ &\left[1+r^a_f\delta(y)+r^b_f\delta(y-\pi R)\right]m_ng^n_R+\partial_yf^n_R=0,\ \ m_nf^n_R-\partial_yg^n_R=0\\ &\left[1+r^a_f\delta(y)+r^b_f\delta(y-\pi R)\right]m_n^2g^n_R=0\\ &\left[1+r^a_f\delta(y)+r^b_f\delta(y-\pi R)\right]m_n^2g^n_R=0, \end{split}$ $\mathcal{N}\ell\ell\mathcal{O}$ **b.cs** \rightarrow $\phi|_{0,\pi R}=0 \Rightarrow f^n(y)|_{0,\pi R}=0$, $\partial_y \chi|_{0,\pi R}=0 \Rightarrow \partial_y g^n(y)|_{0,\pi R}=0$ **Finally we arrive at** $f^{n}(y) = N_{n} \left[\cos(m_{n}y) - \frac{r_{f}^{a}m_{n}}{2}\sin(m_{n}y)\right]$ ➔ **the solutions:** $\int dy \left[1 + r_f^a \delta(y) + r_f^b \delta(y - \pi R)\right] f^n(y) f^m(y) = \delta^{nm}$ **Orthogonality** ➔ Spectra can be solved from \rightarrow $(r_f^a r_f^b m_n^2 - 4) \tan(m_n \pi R) = 2(r_f^a + r_f^b) m_n$ **Similar results for photon hold**

Look at some numerical results...

R = 0 corresponds to the case with BLKT at one of the branes γ a

Δr ≠ 0 implies breakdown of y → **y + πR symmetry(KK-parity)**

Look at the couplings

General strategy for evaluating the couplings in 4D effective theory

$$
\bigotimes \mathcal{L}_4 = \int_0^{\pi R} dy \; \mathcal{L}_5
$$

****Let us find out coupling of n=1 KK photon to two SM (n=0) fermions**

➔

Hallmark of KK-parity of violation, not-present in mUED ➔

$$
g_{\gamma^{(1)}e^{(0)}e^{(0)}} ~=~ e_4 ~ \int_0^{\pi R} (1 + r_f\{\delta(y) + \delta(y-\pi R)\}) f_L^{(0)} f_L^{(0)} a^{(1)} dy
$$

$$
a^{(1)}=\sqrt{\frac{8(4+M_1^2R_b^2)}{-2\left(\frac{R_b}{\pi}\right)(4+M_1^2R_aR_b)+(4+M_1^2R_a^2)(4+M_1^2R_b^2)}}\left[\cos\left(\frac{M_1y}{R}\right)-\frac{R_aM_1}{2}\sin\left(\frac{M_1y}{R}\right)\right]
$$

$$
f_L^{(0)} = g_R^{(0)} = \frac{1}{\sqrt{\pi R}}
$$

****This coupling should vanish when Δr = 0**

A small caveat..

****KK-parity violation does not allow you to couple photon (γ) to charged fermions with 0 different kk-number due to EM gauge invariance.**

**** EM gauge invariance : 0-mode photon remains massless.**

**** a (y) for 0-mode photon remains independent of y. 0**

$$
g_{\gamma^0f^{(m)}f^{(n)}}\ =\ e_5\ \int_0^{\pi R}(1+r_f\{\delta(y)+\delta(y-\pi R)\})f_L^{(m)}f_L^{(n)}a^{(0)}dy
$$

**** coupling vanishes due to orthogonality of fermions .**

How this coupling depends on the parameters ?

KK-parity violating coupling vanishes as $\Delta r \rightarrow o$ **decreases** with \mathcal{R}_a and **R f**

Similar to R-parity violation, but there is no flavour violation as in R-parity violating scenarios.

Coupling : Presence of BLKT at one boundary

 $**$ Coupling vanishes at $r_a = r_f$

Testability at the LHC ?

****Further assumption : BLKT parameter for** all the fermions (r_f) are universal

****n=1 KK photon, γ , decay to all the fermions with equal 1 strength, with Branching ratio ~ 1/8**

****Consider production of γ in pp collision @the 1 LHC (@ 8 TeV) and decay to e/μ pair in association with jet..**

 pp (qq, gq) → **e e / μ μ + jet Both production and decay via KK-parity violating coupling** <u>۔</u>

How much we can probe @ the LHC at 8 TeV ?

****Signal is practically free of SM backgrounds. Only arise from Z/γ* production with jets. Can be reduced to negligible level by demanding high mass leptons in the final state**

> ****20 signal events can be a benchmark for discovery**

**** Selection criteria** $\mathsf{p}^\top(\mathrm{jet}) > 50$ GeV, $\mathsf{p}^\top(\mathrm{lepton}) > 20$ GeV **|η (lepton, jet)| < 3 ΔR (ll, lj, jj)> 0.5**

Reach of LHC at 8 TeV :

(Case of BLKTs at both the boundaries)

With 5 fb collected data,region above the lines can be ruled out. -1

Already probed at LHC at 7 TeV :

****Signal very similar to extra Z' from LR symmetric model or models with extra U(1) symmetry**

****No such signal have been reported at LHS so far.**

Results with BLKT at one boundary

 $*$ $*$ region bounded by the red lines (around $r_a = r_f$) cannot **be probed..**

Summary & Outlook :

❉ **Search strategies based on event shape variables offer a new and powerful technique for LHC search of models with compressed spectra like mUED.**

❉ **BLKTs are ways to introduce the unknown radiative corrections that can arise from the enegy scale above the cut-off Λ, in UED.**

❉ **For illustration, effects of a set of BLKTs have been investigaed in QED in 1+4 dimensions.**

❉ **BLKTs can change the pattern of mass spectra of KK modes. These can used to 'cure' the pathological compressed mass spectra of mUED.**

❉ **Having asymmetric BLKTs at orbifold fixed points will lead to violation of KK-parity. Any KK-level paticle can couple to any other KK-level particles, provided this coupling is not otherwise prohibited.**

❉ **This non-minimal model of UED can be testable at the LHC. We have Proposed a di-lepton + jet signature as the signal of KK-parity violation .**

❉ **Interesting to study the SM with possible set of BLKT parameters. WIth symmetric BLKT parameters at orbifold fixed points, one can have several possibilities of Dark Matter candidate (n=1, KKphoton, KK-Z or KK-higgs).**

❉ **One should also investigate the other existing experimental data (S,T parameters, B and K physics) to constrain the set of BLKT parameters in SM in 1+4 D.**