1. dE/dx (and dN/dx) vs. p 2. Cluster counting efficiency vs. p G. Finocchiaro INFN – LNF

10000 Garfield tracks x 31 momentum points in the range 100-4000 MeV/c in a (1.4x1.4)cm² cell - courtesy C. Gatti

Crossover point in b÷k dE/dx curves

From Matteo's post ("old" FastSim)

- Why K/pi crossover point different for average dE/dx (old FastSim) and Most Probable Value (MPV) (BaBar)?
- Investigate different dE/dx variables

MPV from Landau fit

• *Average* dE/dx

• *Most probable* dE/dx

Landau MPV

Garfield 90%He-10%iC4H10 Truncated mean dE/dx(40 cells)

NClus

- dE/dx curves for π and K cross around p~1.3GeV/c
 - no big differences
- Cross-over for Nclus ~ 1GeV/c
- MPV best reproduced with truncFrac=60%
 - in data, 65-70%
- Cluster density (obviously) function of β (p, particle)
 - counting efficiency will also depend on $\beta \Rightarrow$ Part II

Counting inefficiencies

- Efficiency for detecting clusters mainly depends on
 - 1. time separation between clusters
 - 2. S/N ratio, amplification fluctuations
- Will study effect 1. in the next slides
- Define ∆t_{min}≡t_{i+1}-t_i as the minimum time needed to detect cluster (i+1) after cluster (i) has been detected

At petween clusters – BLE data

Cluster counting efficiency vs. p At between clusters – Garfield 500MeV/c pions

Estimate efficiency as a function of minimum Δt required to detect consecutive clusters

ullet

E(cluster counting) vs. p for $\Delta t_{min} = 0$ ns E(cluster counting) vs. b for $\Delta t_{min} = 0$ ns

E(cluster counting) vs. p for $\Delta t_{min} = 1ns$ E(cluster counting) vs. b for $\Delta t_{min} = 1ns$

E(cluster counting) vs. p for $\Delta t_{min} = 2ns$ E(cluster counting) vs. b for $\nabla t_{min} = 3ns$

E(cluster counting) vs. p for $\Delta t_{min} = 3ns$ E(cluster conting) vs. b for $\nabla t_{min} = 3ns$

E(cluster counting) vs. p for $\Delta t_{min} = 4ns$ E(cluster counting) vs. b for $\nabla t_{min} = 4ns$

E(cluster counting) vs. p for $\Delta t_{min} = 5ns$ E(cluster counting) vs. b for $\Delta t_{min} = 2ns$

E(cluster counting) vs. p for $\Delta t_{min} = 6ns$ E(cluster counting) vs. b for $\nabla t_{min} = 6ns$

$\mathcal{E}(cluster counting) vs. p for <math>\Delta t_{min} = 7ns$ $\mathcal{E}(cluster counting) vs. b for <math>\Delta t_{min} = 2ns$

$\mathcal{E}(cluster counting) vs. p for \Delta t_{min} = 10ns$ $\mathcal{E}(cluster counting) vs. b for <math>\Delta t_{min} = 10ns$

- Total track length normalized to a drift chamber with 40 layers of 1.2cm high rectangular cells.
- Note: the separation is defined here as

K/ π separation for $\Delta t_{min} = 1ns$ K/ π sebaration for $\nabla t_{min} = 1ns$

K/ π separation for $\Delta t_{min} = 3ns$ K/ π sebaration for $\nabla t_{min} = 3ns$

K/ π separation for $\Delta t_{min} = 4ns$ K/ π sebaration for $\nabla t_{min} = 4ns$

K/ π separation for $\Delta t_{min} = 5ns$ K/ π sebaration for $\nabla t_{min} = 2ns$

K/ π separation for $\Delta t_{min} = 7ns$ K/ π sebaration for $\nabla t_{min} = 2us$

K/ π separation for $\Delta t_{min} = 10$ ns

- Note: ϵ =0.6 for Δt_{min} ~7ns (pag. 22)
- However, separation for ϵ =0.6 flat (artificially) good as the one for Δt_{min} only ~4ns (pag. 27)
 - I believe because fluctuations on efficiency are not realistically taken into account with a flat efficiency

SuperB DCH R&D Meeting

- For our FastSim studies we should model counting (in) efficiencies as accurately as possible
- A flat efficiency, albeit derived from data at a given momentum, seems to be too optimistic
 - not consistent with improvement of dN/dx vs dE/dx measured on data (see e.g. M. Piccolo's presentation at the Dec 2011 LNF meeting: <u>http://agenda.infn.it/getFile.py/access?</u>
 <u>contribId=106&sessionId=3&resId=0&materialId=slides&confId=4107</u>)
- We need to decide soon the parameterization and start the FastSim run