

Pure Csl Crystals

Ren-Yuan Zhu California Institute of Technology April 10, 2012

Talk given at SuperB EMC R&D Meeting

History of Scintillating Crystals

M.J. Weber, J. Lumin. 100 (2002) 35

April 10, 2012

Crystals for HEP Calorimeters

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	LYSO(Ce)	PWO	PbF ₂		
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3	7.77		
Melting Point (°C)	651	621	621	1280	1050	2050	1123	824		
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89	0.93		
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00	2.21		
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7	21.0		
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20	1.82		
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No		
Luminescence ^b (nm) (at peak)	410	550	420 310	300 220	480	402	425 420	?		
Decay Time ^b (ns)	245	1220	30 6	650 0.9	300	40	30 10	?		
Light Yield ^{b,c} (%)	100	165	3.6 1.1	36 4.1	21	85	0.3 0.1	?		
d(LY)/dT ^b (%/ ºC)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5	?		
Experiment	Crystal Ball	BaBar BELLE BES III	KTeV	(L*) (GEM) TAPS	L3 BELLE	KLOE-2 SuperB SLHC?	CMS ALICE PANDA	HHCAL?		
a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.										

April 10, 2012

Crystal Density: Radiation Length

1.5 X₀ Cubic Samples:
Hygroscopic: Sealed
Non-hygro: Polished

Full Size Crystals: BaBar CsI(TI): 16 X_o

L3 BGO: 22 X₀

CMS PWO(Y): 25 X₀

April 10, 2012

Scintillation Light Decay Time

Recorded with an Agilent 6052A digital scope

Fast Scintillators

Slow Scintillators

Light Output & Decay Kinetics

Measured with Philips XP2254B PMT (multi-alkali cathode) p.e./MeV: LSO/LYSO is 6 & 230 times of BGO & PWO respectively

April 10, 2012

¹³⁷Cs FWHM Energy Resolution

25% measured with Hamamatsu R1306 PMT with bi-alkali cathode, 2.5 times of BGO/LYSO

2% resolution and proportionality are important for y-ray spectroscopy between 10 keV to 2 MeV

L.O. Temperature Coefficient

-1.4%/°C measured between 15 - 25°C Temperature stabilization is required

Large temperature coefficient: CsI, BGO, BaF₂ and PWO

Crystal Calorimeters in HEP

Date	75-85	80-00	80-00	80-00	90-10	94-10	94-10	95-20
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS
Accelerator	SPEAR	LEP	CESR	LEAR	FNAL	SLAC	KEK	CERN
Crystal Type	Nal(TI)	BGO	CsI(TI)	CsI(TI)	CsI	CsI(TI)	CsI(Tl)	PbWO ₄
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29
Number of Crystals	672	11,400	7,800	1,400	3,300	6,580	8,800	76,000
Crystal Depth (X ₀)	16	22	16	16	27	16 to 17.5	16.2	25
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2
Photosensor	PMT	Si PD	Si PD	WS^a +Si PD	PMT	Si PD	Si PD	APD^a
Gain of Photosensor	Large	1	1	1	4,000	1	1	50
σ_N /Channel (MeV)	0.05	0.8	0.5	0.2	small	0.15	0.2	40
Dynamic Range	104	10 ⁵	10 ⁴	104	104	104	10 ⁴	10 ⁵

Future crystal calorimeters in HEP: PWO for PANDA at GSI LYSO for Mu2e, Super B and HL-LHC PbF₂, PbFCl, BSO for Homogeneous HCAL

KTeV Csl Position Resolution

Light Output and Decay Time

Z. Wei and R.-Y. Zhu, NIM A326 (1993) 508-513

Significant Damage: > 10 krad

Z. Wei and R.-Y. Zhu, NIM A326 (1993) 508-513

Comparison with Csl(Tl)

R.-Y. Zhu, NIM A413 (1998) 297-311

CsI is more than ten times radiation harder than CsI(TI)

Damage Recovery & Mechanism

R.-Y. Zhu, NIM A413 (1998) 297-311

Damage recovers very slow, so monitoring is less important No thermal annealing, so crystal is wasted after radiation damage

April 10, 2012

Summary

- Pure CsI is a fast crystal with decay time less than 30 ns, and light output of 5.5%/22% of LYSO/BGO.
- It has reasonable radiation harness: more than ten times worse than LYSO, but more than ten times better than CsI(TI).
- Its radiation damage does not recover under room temperature, indication a calorimeter more stable than BGO or PWO.
- Thermal annealing does not work for CsI(Tl).
- Radiation damage mechanism of CsI(TI) is understood to be due to oxygen contamination. Crystals grown in vacuum would help to improve its radiation hardness.
- Commercially produced CsI is not radiation hard. For SuperB applications an R&D program should include the last three points with an aim to improve quality of CsI crystals to meet SuperB requirements. Since crystals can not be reused, this will be an expensive exercise as compared to other crystals.
- Vendors: Saint-Gobain, Kharkov and SIC. Mass production cost at \$5/cc seems achievable assuming a successful R&D program leading to <5% rejection caused by the radiation hardness requirement. The cost will be increased correspondingly if this rejection rate is higher than 5%.