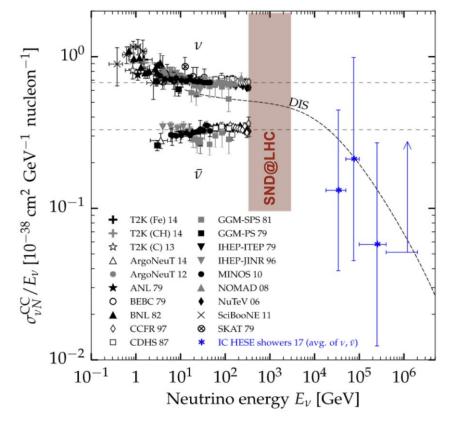


NEUTRINO INTERACTION STUDIES WITH SND@LHC DETECTOR

CSN1 24/11/2025 Giulia Paggi Università e INFN Bologna On behalf of the SND@LHC Collaboration

Neutrinos at the LHC

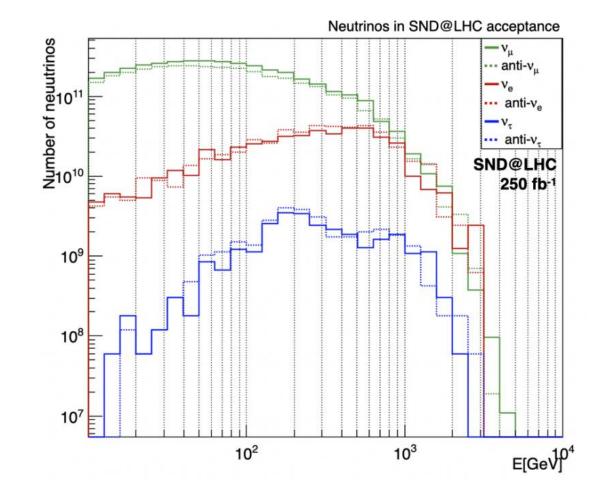

Feasibility of high energy neutrino studies at LHC has been investigated since the 90° s

- → Possibility to study pp→vX in an **unexplored range**
 - \rightarrow High v energies: E_v [10²,10³] GeV
- → Large v flux in forward region from pp collisions

Currently, two experiment in complementary ranges:

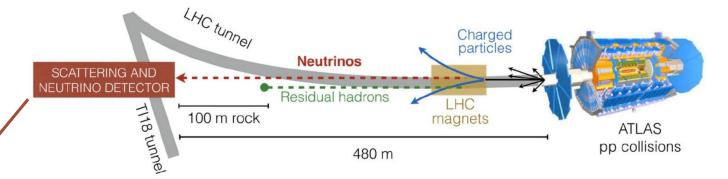
- \rightarrow **FASERv** on axis: $\eta > 9$
- ightarrow Scattering and Neutrino Detector at the LHC slightly off axis: $7.2 < \eta < 8.4$

PRL 122 (2019) 041101


SND@LHC physics goal

SND@LHC studies **all neutrino flavours** at **TeV** energies

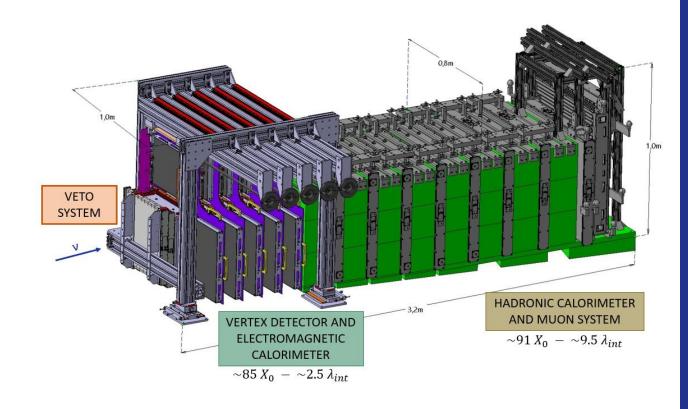
- ightarrow Measure **charm production** at high η (gg ightarrow cc)
 - ightarrow Given the η region, the majority of vs is from charmed hadrons decay
- → High-energy neutrino cross section measurements
- $\rightarrow \nu_{\tau}$ observations
- ightarrow Test lepton **flavour universality** measuring $^{\nu_e}\!/_{\nu_\mu}$ and $^{\nu_e}\!/_{\nu_\tau}$
- → Direct search of feebly-interacting particles (FIPs)



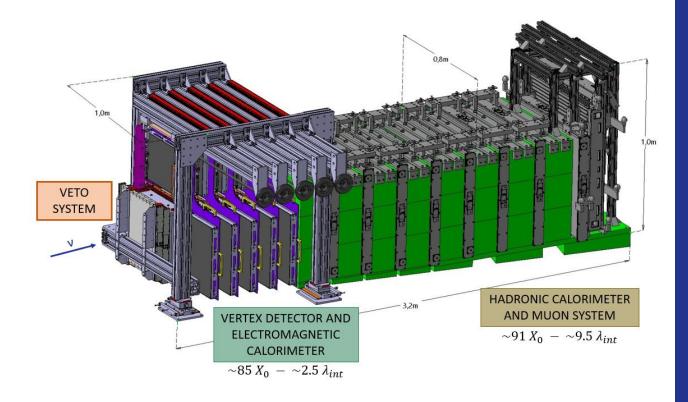
The detector: location

480 m away from the ATLAS interaction point (IP1) in the TI18 tunnel

- → Shielded by **100 m rock**
- → LHC magnet deflects charged particles

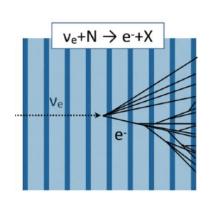

Neutrinos and FIPs reach the detector

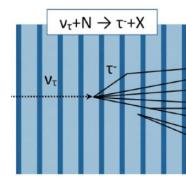
Hybrid detector composed of:

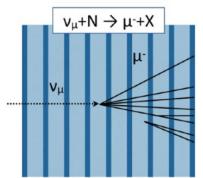


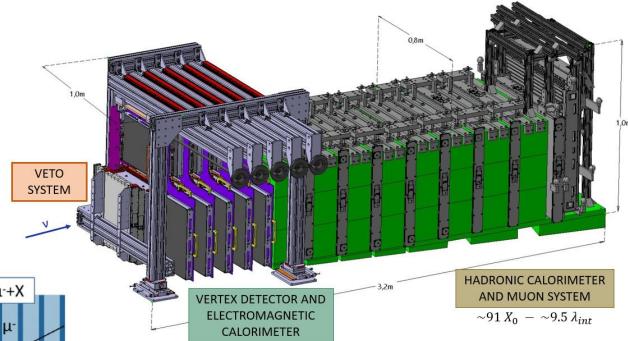
Hybrid detector composed of:

- → Veto system
 - → Since 2024: 3 planes of scintillating bars to tag incoming charged particles



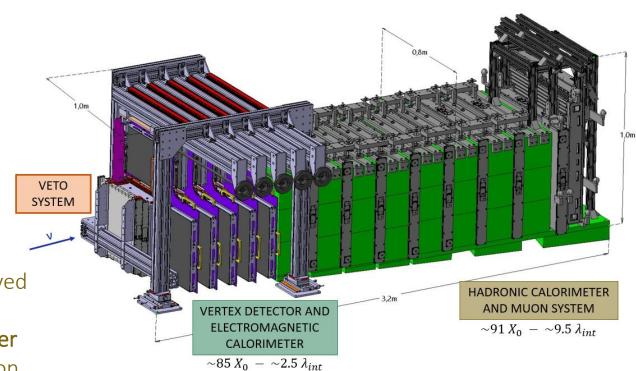





Hybrid detector composed of:

- → Veto system
 - → 3 planes of scintillating bars to tag incoming charged particles
- → Target with vertex detector and electromagnetic calorimeter
 - → Emulsion plates interleaved with tungsten for tracking and vertex identification
 - → Scintillating fibers (SciFi) for time and calorimetric information

 \sim 85 $X_0 - \sim$ 2.5 λ_{int}



Hybrid detector composed of:

- → Veto system
 - → 3 planes of scintillating bars to tag incoming charged particles
- → Target with vertex detector and electromagnetic calorimeter
 - → Emulsion plates interleaved with tungsten for tracking and vertex identification
 - → Scintillating fibers (SciFi) for time and calorimetric information
- → Hadronic calorimeter and muon system
 - → 5+3 scintillator planes read by SiPMs interleaved with iron
 - → 5 US: horizontal bars, focus on **calorimeter**
 - → 3 DS: horizontal and vertical bars, focus on muon tracking
 - → 2 MiniDTs: small size replica of CMS DTs

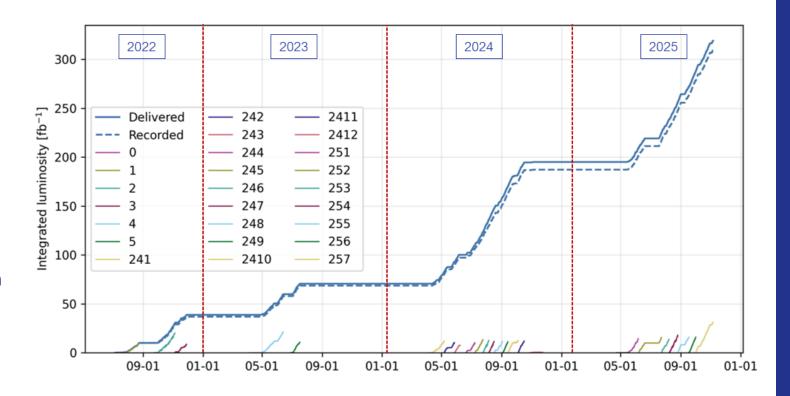
Upgrade of Muon system

Ongoing analyses confirm a need for better muon tracking → in March 2024 two drift chambers with CMS DT technology were installed

Aim of halving the muon reconstruction resolution

- Offline event matching validated
- Track reconstruction development ongoing

SND@LHC Data

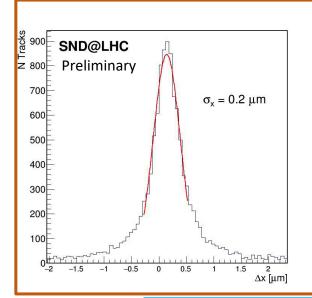


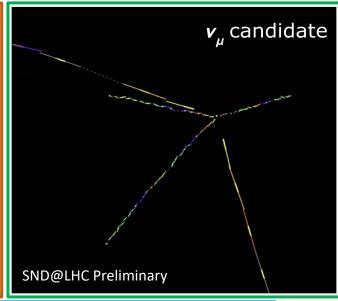
• Electronic detectors:

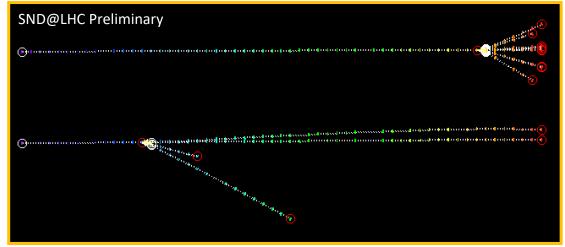
- 2025: 122 fb⁻¹, uptime 98%
- 2024: 119 fb⁻¹, uptime 95%
- 2023: 32 fb⁻¹, uptime 99%
- 2022: 36.8 fb⁻¹, uptime 95%

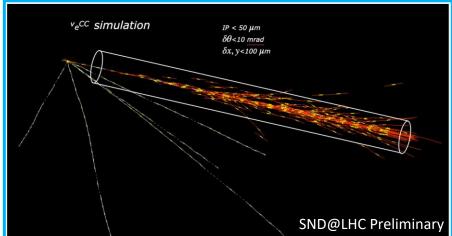
• Emulsion:

- 2022-23: 5 full target
- 2024-25: target was only partially instrumented unexpected increase in muon flux
- 252 fb⁻¹ integrated


Emulsion data analysis






Emulsion data analyses:

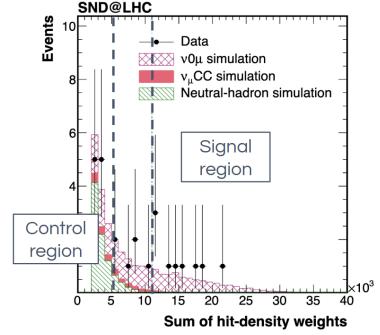
- Achieved position resolution 0.2 μm
- Vertices search ongoing on reconstructed data
 - Muon neutrinos
 - Electron neutrino
 - Muon DIS

μ analysis with electronic detector

Muon analysis

- Passing muons: Muon flux is important for detector operations and physics analyses
 - Main experimental backgrounds are due to muon interactions
 - Measurement of flux with 2022 data (<u>Eur. Phys. J. C (2024) 84: 90</u>): Excellent agreement between all subdetectors, including emulsion
- Passing muons in heavy ions runs: Softer energy spectrum due to different LHC optics
 - Cross-check of detector performance
 - Further validation of the background model
- Muon trident cross-section measurement
- Muon DIS in emulsion

v analysis with electronic detector

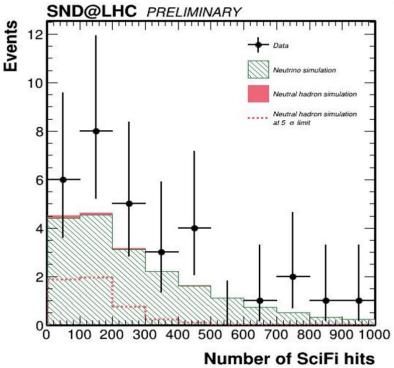


Recently published:

- 0μ final states: the first observation of non- ν_{μ} CC neutrino interaction using electronic detectors at the LHC PRL 134 231802 (2025)
- Signal: ν_e CC and NC interactions
 - Expected signal: 7.2 events \rightarrow 4.9 ν_e CC, 2.2 NC, 0.1 ν_{τ} CC
 - Expected significance: 5.5 σ
- Total expected background: 0.32 ± 0.06 events
 - Neutral hadrons: 0.015 events → constrained by control region data
 - Neutrino background: 0.30 events \rightarrow due to ν_{μ} CC interactions

Number of events observed: 9 Observation significance: 6.4 σ

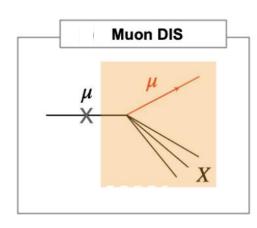
ν_{μ} analysis 2022+2023

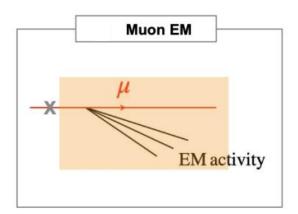


Muon neutrino analysis

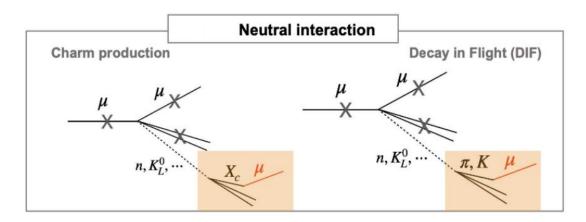
- **Published:** Observation of collider muon neutrinos with the SND@LHC experiment, PRL 131 031802 (2023)
 - On 2022 data, 36.8 fb⁻¹
 - Observed 8 ν_{μ} interaction candidates
- Ongoing: Update on 2022+2023 dataset
 - Larger statistic: 68.5 fb⁻¹
 - Optimized fiducial volume cuts → acceptance 18% up from 7.5%

Number of candidates events: 32




Observation of v_{μ} : background

Undetected muon background



μ in target acceptance

$$N_{\mu}^{bkg} = N_{\mu} \times (1 - \epsilon_{Veto})$$
Veto system inefficiency

Muon-induced neutral particles

$$N_{\rm neutrals}^{\rm bkg} = N_{\rm neutrals} \times P_{\rm inel} \times \epsilon_{\rm sel}$$

To be estimated from **simulations**

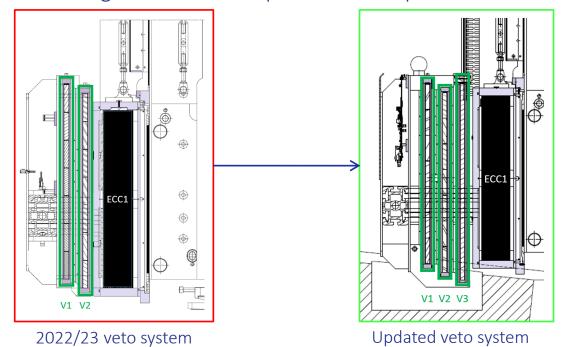
u_{μ} analysis 2022+2023

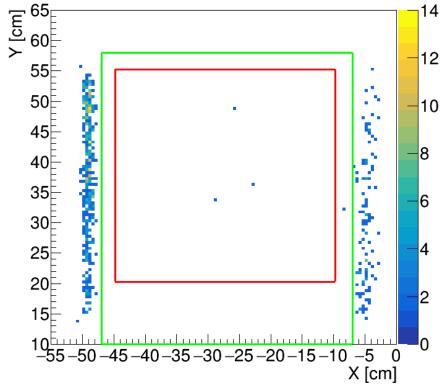
Step 1: Fiducial volume selection

Cut	Description	-	
A	Average SciFi channel in [200, 1200] (vert.) and [300, 1336] (hor.)		Define fiducial area of $25 \times 26 \text{ cm}^2$ across the detector layers
В	Average DS bar number in [10, 50] (vert.) and [70, 105] (hor.)		across the detector layers
\mathbf{C}	No veto hits		No incoming charged particles
D	No hits in the $1^{\rm st}$ SciFi station		1 st SciFi plane as additional Veto plane

CSN1 G. Paggi

Veto System Upgrade





Inefficiency **optimal value** in the 2022-23 period was $(7.8 \pm 2.8) \times 10^{-8}$ achieved on a fiducial area of 35×35 cm² \rightarrow target coverage of \sim 64%.

In YETS 2023-24 a 3rd veto plane was added

The 3rd plane has **vertical** bars to reduce overlapping area → minimizes signal loss due to spatial and temporal coincidences

In the new configuration the inefficiency is $(4.9 \pm 1.9) \times 10^{-9}$ on the full target area

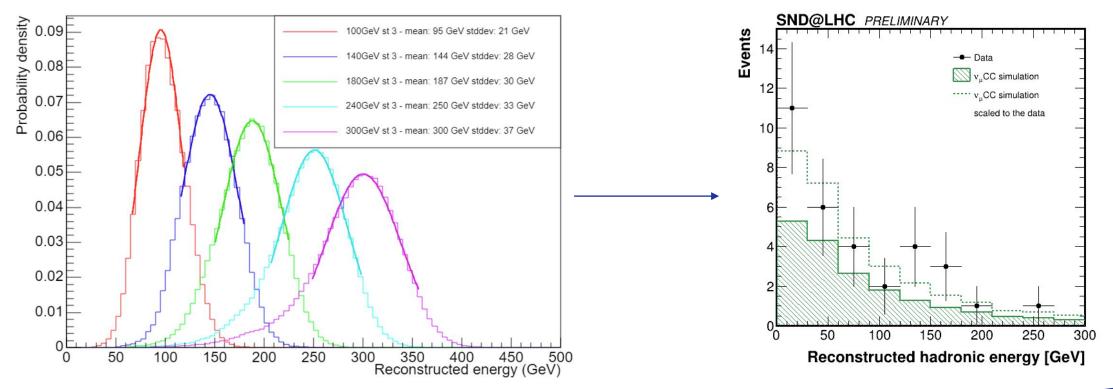
increase of 56% of observable neutrinos

On <u>JINST</u>!

u_{μ} analysis 2022+2023

Step 2: neutrino candidate selection

Cut	Description		
E	If there are DS hits, all US planes must be hit	Continuity of μ signal	
\mathbf{F}	Previous event more than 100 clock cycles away	Remove spurious events	
G	Event has one reconstructed DS track		
H	Latest DS hit time > earliest SciFi hit time	Remove spurious events	
I	DS track intersects first SciFi plane > 5 cm away from detector edge	Track quality requirements	
J	Sum of min(DOCA) of track to SciFi hits must be < 3 cm in both horizontal and vertical planes, per station	→ Track compatibility	
K	More than 35 SciFi hits	──→ Large activity	
\mathbf{L}	US total QDC larger than 600 (700) for data (MC)	- Lurge activity	
M	Number of DS hits per projection < 10		


Hadron calorimeter calibration

vN collisions produce hadronic showers → estimate the energy deposited in both the target and the calorimeter

Test beam in 2023 to calibrate with hadrons beam at various energies reaching a resolution of 12-22%

On <u>JINST</u>!

2024 ν_{μ} update

Work in progress!

Goal: update the CC ν_{μ} study with the 2024 SND@LHC data and exploiting the upgraded veto system and new algorithms developed on 2023 test beam data

2024 dataset: SND@LHC recorded 119 fb⁻¹ \rightarrow **1.75x dataset** 2022+2023

Large sample \rightarrow selection method and background rejection are developed on a subsample of \sim 20 fb⁻¹ keeping the rest of the data blinded

Use data also for muon background estimation → reverse veto requirements

2024 ν_{μ} update

Work in progress!

Step 1: preselection with relaxed constraint

For ν_{μ} sample:

1. No more than one veto plane with signal;

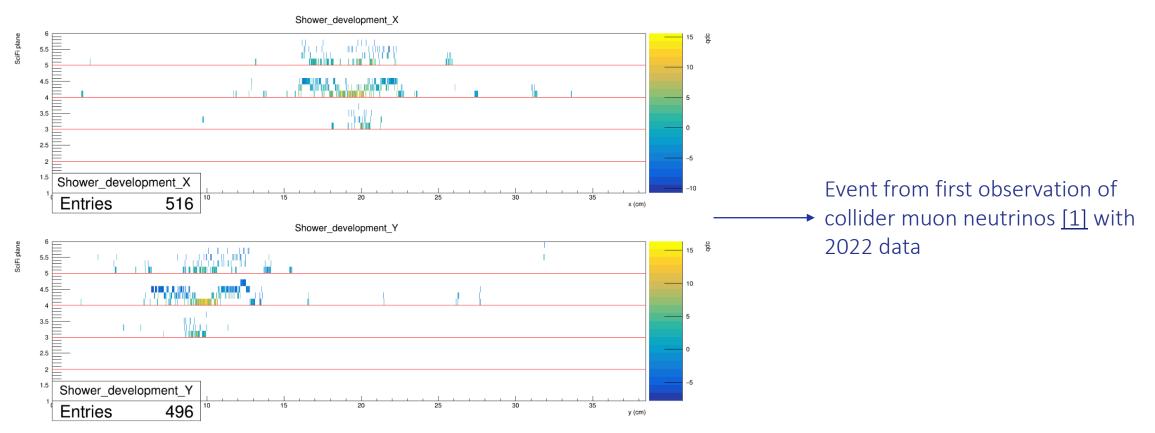
2. At least 2 DS with $> 1 \times$ and 1 y hit

3. A shower tagged

No incoming charged particle

Outgoing muon

Interaction in target region


Shower tagging

Aim: tag the first wall in which an hadronic shower is visible

Achieved by: requiring a minimum number of hits in a sliding window

[1] The SND@LHC Collaboration Observation of collider muon neutrinos with the SND@LHC experiment, Phys. Rev.Lett. 131

2024 ν_{μ} update

Work in progress!

Step 1: preselection with relaxed constraint

For ν_{μ} sample:

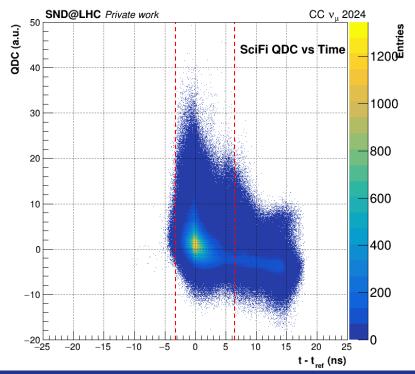
- 1. No more than one veto plane with signal;
- 2. At least 2 DS with $> 1 \times$ and 1 y hit
- 3. A shower tagged

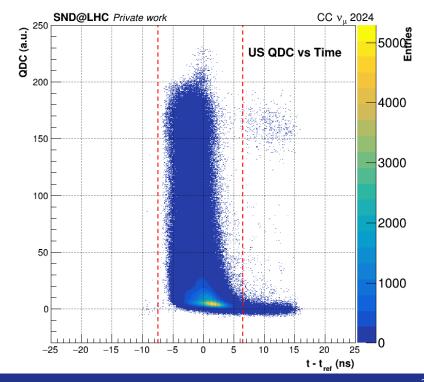
From 1.14×10^{10} events $\rightarrow 3.25 \times 10^5$ events

For μ sample:

- 1. No less than 2 veto planes with signal;
- 2. At least 2 DS with $> 1 \times$ and 1 y hit
- 3. A shower tagged

12% of a single run (\sim 0.1 fb⁻¹) \rightarrow 1.34 \times 10⁶ events



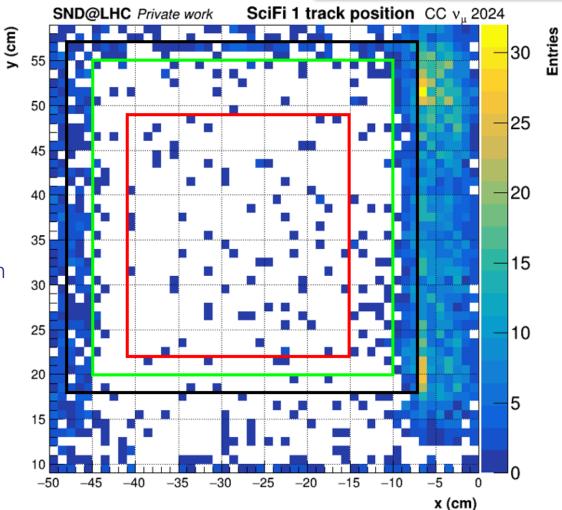


Work in progress!

- 1. No hits in the veto system
- 2. Event synchronized with an interaction in IP1
- 3. Correct hit timing
 - $t_{ref} \equiv \text{most probable value}$

Work in progress!

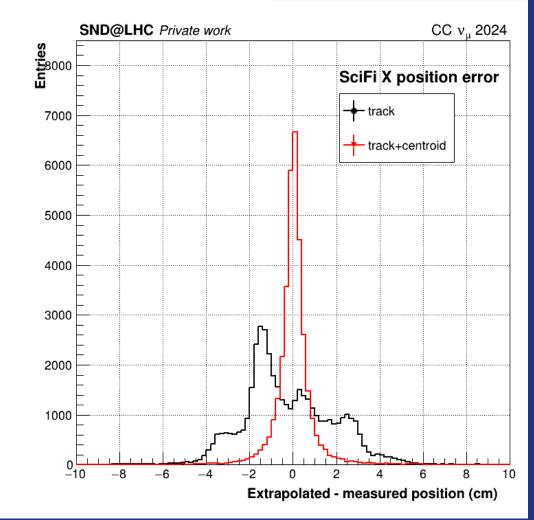
- 1. No hits in the veto system
- 2. Event synchronized with an interaction in IP1
- 3. Correct hit timing
- 4. Activity in all US planes → muon reaching DS planes
- 5. Shower tagged with the strict algorithm
 - Require two consecutive SciFi planes tagged → suppress EM showers exploiting longitudinal development difference
 - Reject events with 1 < hits < 7 before the shower \rightarrow passing muon show a peak at ~ 4 hits (2 per module)
 - SciFi 1: background mitigation deferred to MC-based study
 - SciFi 5: cannot require 2 consecutive tags $\rightarrow \geq 7$ bars hit across US subsystem



LMA MATER STUDIORUM Università di Bologna

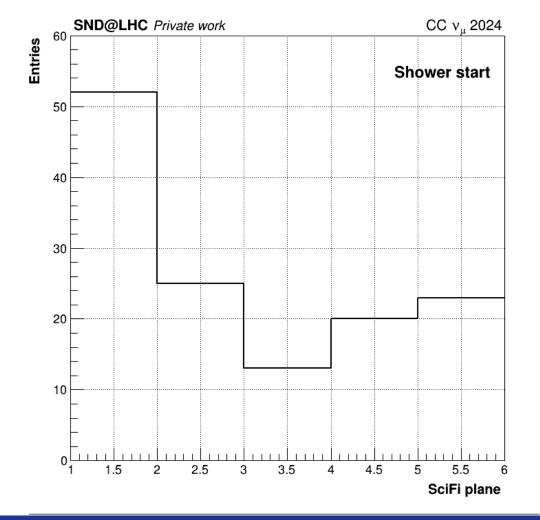
Work in progress!

- 1. No hits in the veto system
- 2. Event synchronized with an interaction in IP1
- 3. Hit timing
- 4. Activity in all US planes → muon reaching DS planes
- 5. Shower tagged with the strict algorithm
- 6. Check for a reconstructed track (with $\chi^2 \leq 5$) and check that the extrapolated (x,y) position:
 - to the shower start wall is inside the target region with fiducial cut of 2cm top/bottom, 3cm left/right
 - SciFi module
 - fiducial area 2024
 - fiducial area 2022-23



Work in progress!

- 1. No hits in the veto system
- 2. Event synchronized with an interaction in IP1
- 3. Hit timing
- 4. Activity in all US planes → muon reaching DS planes
- 5. Shower tagged with the strict algorithm
- 6. Check for a reconstructed track (with $\chi^2 \le 5$) and check that the extrapolated (x,y) position:
 - Distance < 3cm (DS extrapolation resolution) to centroid ≡ proxy for the interaction vertex, QDC-weighted position of hits
 - Add centroid to track points and re-fit
 - Extrapolate to veto the new track and require it to fall within active region, with a 1 cm margin from all edges



LMA MATER STUDIORUM JNIVERSITÀ DI BOLOGNA

Work in progress!

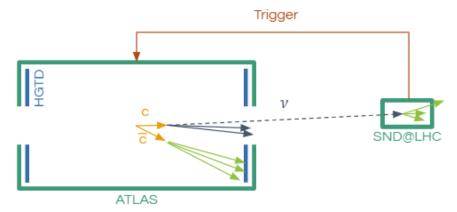
- 1. No hits in the veto system
- 2. Event synchronized with an interaction in IP1
- 3. Hit timing
- 4. Activity in all US planes → muon reaching DS planes
- 5. Shower tagged with the strict algorithm
- 6. Check for a reconstructed track (with $\chi^2 \le 5$) and check that the extrapolated (x,y) position compatible with shower position

Summary and outlook

Analysis progressed substantially, but far from complete:

- Focus remains on optimising event selection, using:
 - 2024 preselected data sample
 - 2022/23 neutrino candidate samples
- Detailed studies of hit timing and event features greatly improved detector understanding Next steps:
- Include shower direction reconstruction to estimate incoming particle energy
- Validation on MC was not achievable within thesis timeframe but will enable:
 - Validation of selection flow
 - Estimation of expected interaction rates and uncertainties
 - Assessment of backgrounds, including muons and neutral hadrons

THANKS FOR THE ATTENTION


HL-LHC prospect

Recently approved (<u>CERN-LHCC-2025-004</u>) upgrade to run during HL-LHC

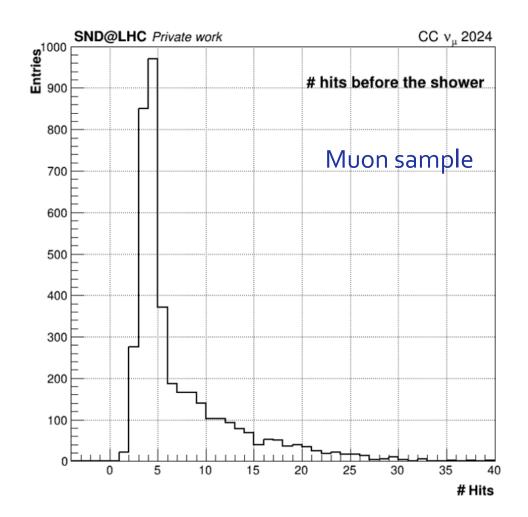
- Need to replace emulsions → reuse CMS Outer Barrel strips making it the first Si-based neutrino vertex detector
- Add **magnetized** calorimeter for charge and momentum measurement \rightarrow distinguish ν and $\bar{\nu}$
- Include fast-timing detector → resolve the pile-up and sending a trigger signal to ATLAS, feasibility study ongoing

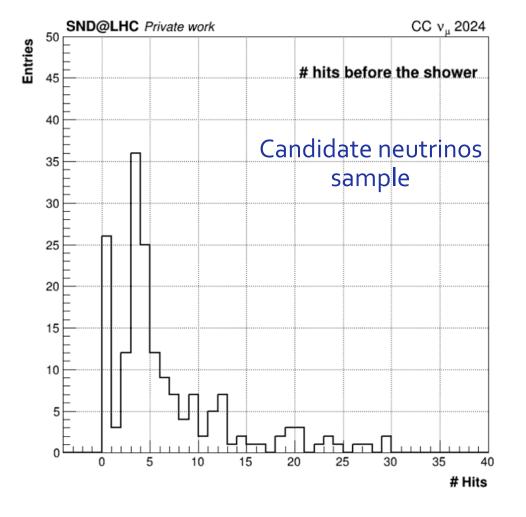
Run 3 HL-LHC Uncertainty Uncertainty Measurement Sys. Stat. Stat. Sys. 35%Gluon PDF $(x < 10^{-5})$ 5%5%22%10% ν_e/ν_τ ratio for LFU test ν_e/ν_μ ratio for LFU test 10%< 5% Charm-tagged ν_e/ν_μ ratio for LFU test ν_{μ} and $\overline{\nu}_{\mu}$ cross-section

Neutrino Target

Preselection

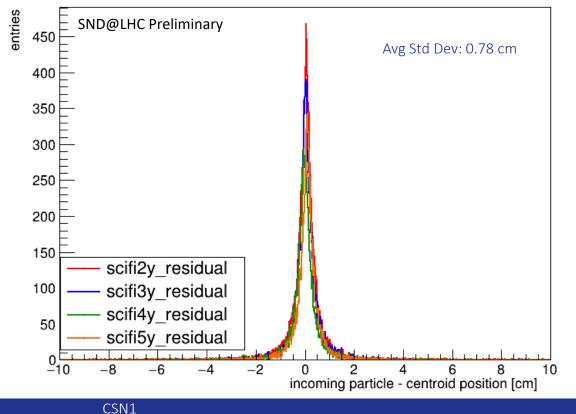
Run	Emulsion target	Events	Luminosity [fb ⁻¹]	Selected events	Selected events %
8285	1	4.12×10^{8}	0.6945	1.17×10^{4}	0.0028
8315	1	4.23×10^{8}	0.7400	1.19×10^{4}	0.0028
8320	2	4.48×10^{8}	0.7827	1.25×10^{4}	0.0028
8323	2	4.50×10^{8}	0.7900	1.22×10^{4}	0.0027
8638	3	6.05×10^{8}	1.0690	1.76×10^{4}	0.0029
8724	3	5.43×10^{8}	0.9128	1.58×10^{4}	0.0029
9015	4	4.76×10^{8}	0.8447	1.36×10^{4}	0.0029
9094	4	5.44×10^{8}	0.9650	1.56×10^{4}	0.0029
9258	5	5.07×10^{8}	0.8990	1.47×10^{4}	0.0029
9262	5	5.24×10^{8}	0.9320	1.51×10^{4}	0.0029
9288	6	5.14×10^{8}	0.9125	1.48×10^{4}	0.0029
9361	6	5.38×10^{8}	0.9420	1.55×10^{4}	0.0029
9411	7	5.32×10^{8}	0.9311	1.51×10^{4}	0.0028
9436	7	6.14×10^{8}	0.9080	1.76×10^{4}	0.0029
9562	8	5.33×10^{8}	0.9420	1.56×10^{4}	0.0029
9569	8	5.27×10^{8}	0.9350	1.51×10^{4}	0.0029
9622	9	7.04×10^{8}	1.2320	2.02×10^{4}	0.0029
9685	9	5.48×10^{8}	0.9771	1.57×10^{4}	0.0029
9715	10	3.36×10^{8}	0.6102	9.04×10^{3}	0.0027
9880	10	5.36×10^{8}	0.8814	1.55×10^{4}	0.0029
9885	11	5.31×10^{8}	0.9594	1.53×10^{4}	0.0029
9913	11	5.18×10^{8}	0.9361	1.48×10^{4}	0.0029
Total	_	1.14×10^{10}	19.7965	3.25×10^{5}	0.0029

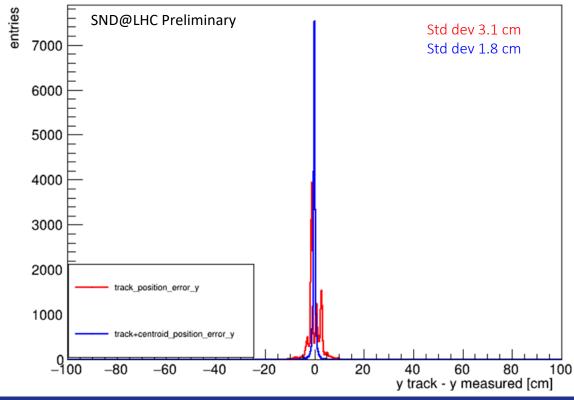




Preselection

Validation of shower centroid

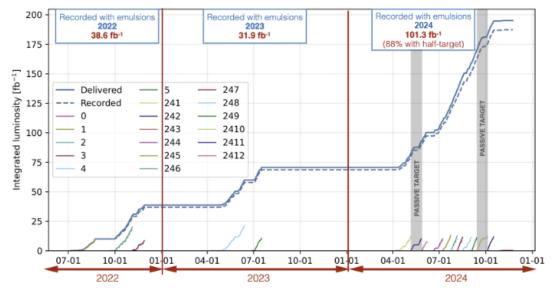



Centroid: Mean position averaged with qdc value. A minimum number of hits is needed

Aim: Validate centroid distribution using muon producing DIS showers

centroid_y Histograms

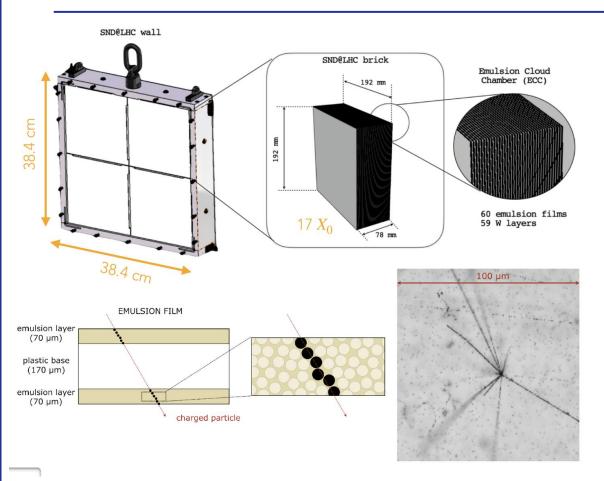
position_error_y Histograms

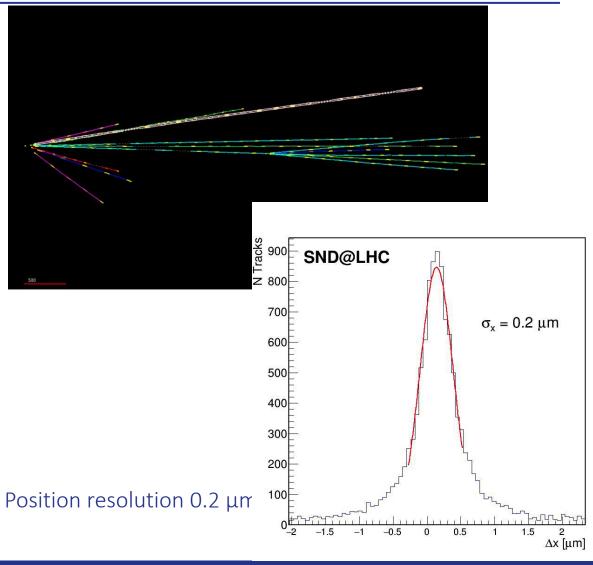


SND@LHC Data

- Electronic detectors:
 - 2025 (so far): Recorded 10 fb⁻¹
 - 2022 2024: Recorded 187 fb⁻¹
 - 96% uptime
- Emulsion detector:
 - 14 targets exposed in 2022 2024
 - ~170 fb⁻¹ integrated
 - 5700 emulsion films (210 m²)
 exposed and developed
- Unexpected increase in the muon flux in 2024.
 - Doubled the target replacement rate.
 - Instrumented only the lower half of the target.
 - Keep 65% of neutrino interactions.
 - Situation improved in 2025, but rates are still
 40% higher than in 2022 and 2023.

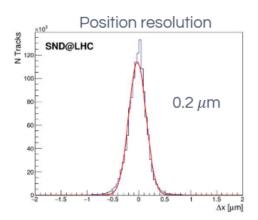
- Emulsion scanning is performed with fully automated microscopes in six laboratories: CERN, Bologna, Napoli, Nagoya, Gran Sasso, Santiago
- Track density up to 4x10⁵ tracks/cm²

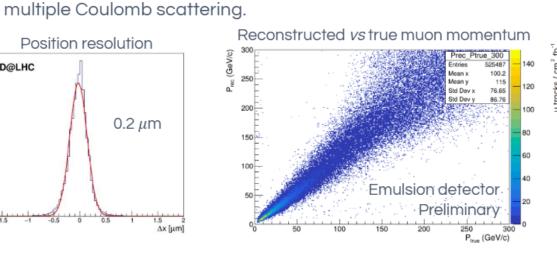

Status of emulsion scanning: 800 kg x 42 fb⁻¹



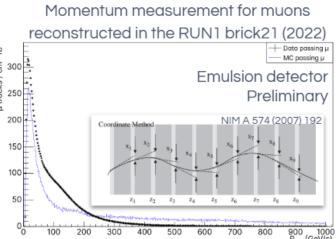
Downstream detector


y [cm]


Passing muons


- Muon flux is important for detector operations and physics analyses.
 - Defines the emulsion exposure limit.
 - Main experimental backgrounds are due to muon interactions.
- Measurement of flux with 2022 data.
 - Eur. Phys. J. C (2024) 84: 90
 - Excellent agreement between all sub-detectors, including emulsion.
 - Agreement with MC predictions within 20%.

Recent improvements in emulsion reconstruction allow for the measurement of muon momentum via

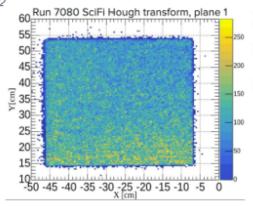

year	flux [trk/(cm ⁻² fb ⁻¹)]		
2022	557		
2024	1154		
2025	832		
MC	460		

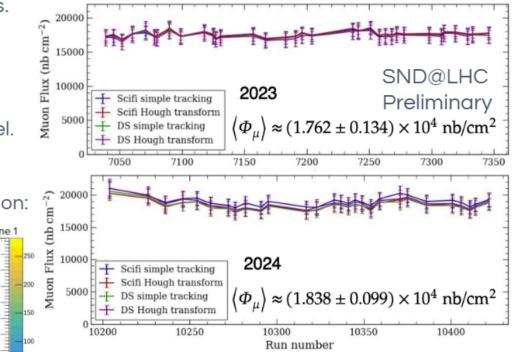
G. Paggi

20

10

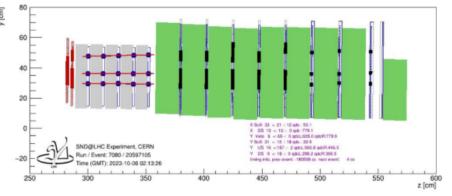
CSN1

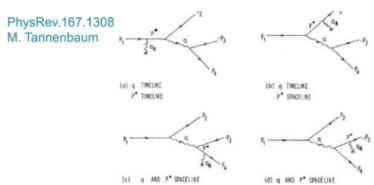


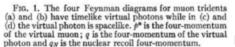


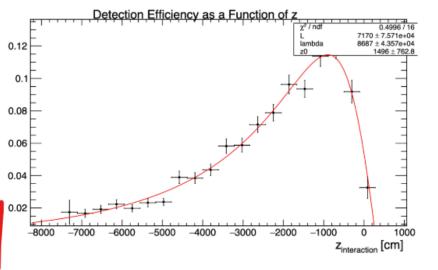
Passing muons in heavy ion runs

- Measurement of the muon flux in heavy ion collisions.
 - o Different physics compared to pp.
 - Softer energy spectrum.
 - Different LHC optics compared to pp.
- Allows for further validation of the background model.
- Cross-check of detector performance.
- Measurement in good agreement with MC expectation:
 - \circ 1.56 ± 0.19 × 10⁴ nb/cm²
- PbPb/pp flux ratio: ~10⁶
 - With different LHC optics

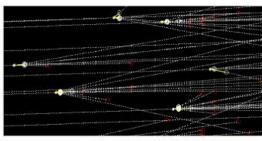




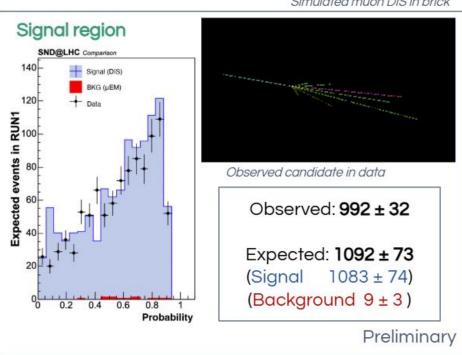



Muon trident cross-section measurement

- SND@LHC is sensitive to muon trident interactions in the rock upstream of the detector.
 - o Signature: three parallel muon tracks.
 - Trident signal: $\mu^{\pm} + N \rightarrow \mu^{+}\mu^{-}\mu^{\pm} + N$
 - Background: $\mu^{\pm} + N \rightarrow \mu^{\pm} + N + \gamma$, $\gamma + N \rightarrow N + \mu^{+}\mu^{-}$
 - Muons from γ conversion are too soft to reach the detector.
 - Background is negligible.



Muon DIS in the emulsion


- Identification of muon DIS in the emulsion target with cut-based approach on topological and kinematical variables
- Data sample: vertices reconstructed in RUN1 brick 21: 32kg x 9.5fb⁻¹

Simulated muon DIS in brick

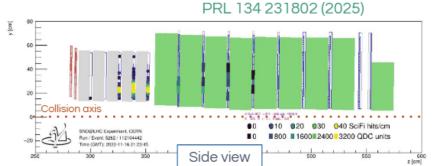
Event selection criteria charged vertex mean angular aperture > 13 mrad impact parameter<2.5µm fraction of rec. segments>0.87 rec. hadron momentum > 16 GeV Signal (DIS) Signal (DIS) Signal (DIS) BKG (µEM) BKG (µEM) BKG (µEM) ±0.15 Impact Parameter [µm]

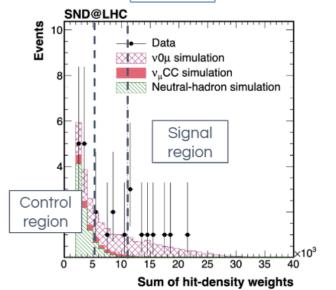
Rec. HAD momentum [GeV/c]

Observation of 0μ events in SND@LHC

Signal: $\nu_{\rm e}$ CC and NC interactions **Backgrounds**

- Neutral hadrons: 0.01 events
 - o Constrained by control region data.
- Neutrino background: 0.30 events
 - Dominated by muon neutrino CC interactions

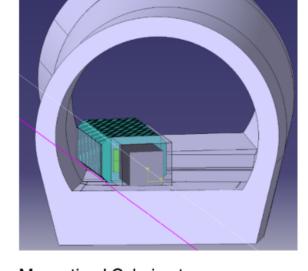

0μ observation significance

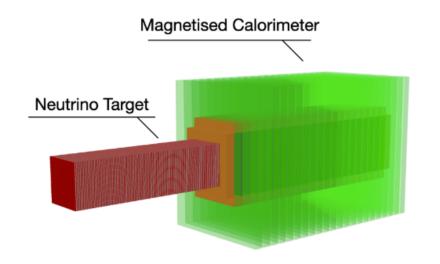

- Total expected background: 0.32 ± 0.06 events
- Expected signal: 7.2 events
 - \circ 4.9 ν_{e} CC, 2.2 NC, 0.1 ν_{r} CC
- Expected significance: 5.5 σ

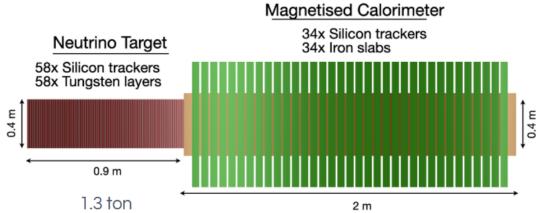
Number of events observed: 9 Observation significance: 6.4 σ

 $\nu_{\rm g}$ CC observation significance: 3.7 σ

- First observation of non- ν_{μ} CC neutrino interaction using electronic detectors at the LHC.
- Milestone towards neutrino observation at the HL-LHC.



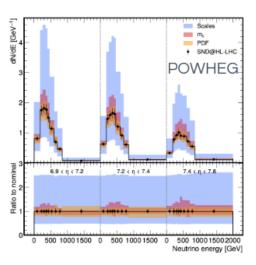


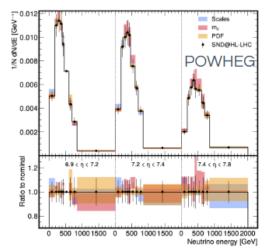


SND@HL-LHC

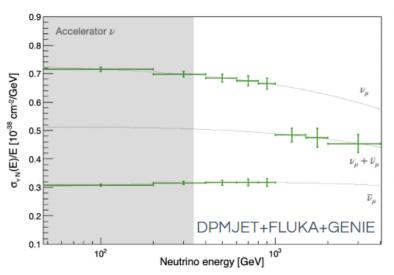
- Running the emulsion detector during the HL-LHC is unfeasible.
- HL-LHC phase of the experiment will use silicon-strip instrumentation.
 - First Si-based neutrino vertex detector!
- The calorimeter will be magnetised for muon momentum and charge measurement.

CERN-LHCC-2024-014





SND@HL-LHC Physics case



- Energy and η distribution of (charm-induced) $\nu_{_{e}}$ CC interactions Left: event yield. Right: normalized to an arbitrarily chosen reference bin

Run 3 HL-LHC

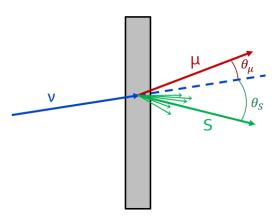
Measurement	Uncertainty		Uncertainty	
	Stat.	Sys.	Stat.	Sys.
Gluon PDF $(x < 10^{-5})$	5%	35%	2%	5%
ν_e/ν_τ ratio for LFU test	30%	22%	6%	10%
ν_e/ν_μ ratio for LFU test	10%	10%	2%	5%
Charm-tagged ν_e/ν_μ ratio for LFU test	-	-	10%	< 5%
ν_{μ} and $\overline{\nu}_{\mu}$ cross-section	<u></u>		1%	5%

Extending ν cross-section measurements to a few TeV

Technical Proposal for Run 4 https://cds.cern.ch/record/2926288

ESPPU Input

Backup: Shower direction reconstruction


BOLOGNA
ituto Nazionale di Fisica Nucleare

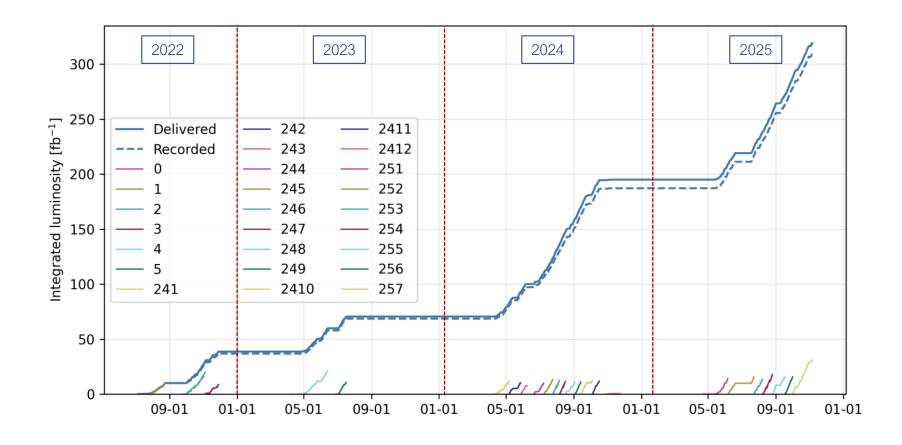
 \pmb{Aim} : reconstruct shower direction \rightarrow crucial for the ν_{μ} energy reconstruction as $E_{\nu} \sim E_{S} \left(1 + \frac{\sin(\theta_{S})}{\sin(\theta_{\mu})} \right)$

Idea:

- In all SciFi planes with a shower → compute centroid: average hit position weighted with signal amplitude
- 2. Fit centroids position to compute direction

This was validated to be a good method but

- Resolution depends on the dimension of the shower
- Not applicable if the shower starts in the last wall



SND@LHC Data

