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Terminology (1)
● Client

– Machine running a ROOT session opening the 
connection to the PROOF master

● Master
– PROOF machine running a ROOT application 

coordinating the work between workers and merging the 
results

● Worker (or Slave)
– PROOF machine running a ROOT application doing the 

actual work
● PROOF session

– A set {client, master, workers} started by TProof::Open
● Query

– Process request submitted by the client to the Master; 
consists of a selector and possibly a chain
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Terminology (2)
● Package / PAR file

– Additional code needed by the selector, not available on 
the PROOF cluster, loaded as a separate library

– Gzipped tarball containing all what needed to enable the 
package

● Selector
– A class deriving from TSelector providing the code to be 

processed 
● Dataset

– Set of files containing the TTree to be processed

– Can be a TChain, TFileCollection, TDSet

– Can be the name of a TFileCollection stored on the 
master
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Open a PROOF-Lite session

● Once the daemon is running we can open a 
PROOF session 

● Now we are ready to go, but ... what's TProof ?

$ root -l
root [0] TProof *proof = TProof::Open("")
 +++ Starting PROOF-Lite with 2 workers +++
Opening connections to workers: OK (2 workers)
Setting up worker servers: OK (2 workers)
PROOF set to parallel mode (2 workers)
(class TProof*)0x8330140
root [1]
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TProof: the PROOF shell
● TProof is the interface class to interact with the PROOF 

session
● Everything you will do on the session will be through the 

TProof class methods, e.g.
– Print() gives information about the session

– Exec(“CINT command”) allows to execute simple 
commands on the workers

– AddInput() make objects available to the selector

– Process(...) allows to run a selector

– GetOutputList() returns the list of output objects

– DrawSelect() allows to draw distributions

– ... 
● We will see others as they come in the game
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TProof: gProof
● You can create as many PROOF sessions as you want

– Each session is controlled by its TProof object
● Running TProof::Open again on the same master does not 

hurt, just returns the pointer to the existing open session 

● The global gProof points to the latest TProof created or 
attached

– TProof::cd() allows to change the session pointed to by 
gProof
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TProof::Print (1)
● Gives information about the session

$ root [1] p->Print()
*** PROOF-Lite cluster (parallel mode, 2 workers):
Host name:                  macphsft12.local
User:                       ganis
ROOT version|rev|tag:       5.32/02|r43514
Architecture-Compiler:      macosx64-gcc421
Protocol version:           33
Working directory:          /Users/ganis/local/root/opt/root
Communication path:         /var/folders/uC/uC0RGjQUFlmzR689bg+JJU+
+0gQ/-Tmp-/plite-38583
Log level:                  0
Number of workers:          2
Number of active workers:   2
Number of unique workers:   1
Number of inactive workers: 0
Number of bad workers:      0
Total MB's processed:       0.00
Total real time used (s):   0.000
Total CPU time used (s):    0.000
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TProof::Print (2)
● TProof::Print(“a”) gives full details about the workers

List of workers:
*** Worker 0.0  (valid)
    Worker session tag:      0.0-macphsft12.local-1334609972-38703
    ROOT version|rev|tag:    5.32/02|r43514|5.32/02
    Architecture-Compiler:   macosx64-gcc421
    Working directory:       /Users/ganis/.proof/local-root-opt-
root/session-macphsft12.local-1334609971-38698/worker-0.0
    MB's processed:          0.00
    MB's sent:               0.00
    MB's received:           0.00
    Real time used (s):      0.000
    CPU time used (s):       0.000
*** Worker 0.1  (valid)
    Worker session tag:      0.1-macphsft12.local-1334609972-38705
    ROOT version|rev|tag:    5.32/02|r43514|5.32/02
    Architecture-Compiler:   macosx64-gcc421
    Working directory:       /Users/ganis/.proof/local-root-opt-
root/session-macphsft12.local-1334609971-38698/worker-0.1
    MB's processed:          0.00
    MB's sent:               0.00
    MB's received:           0.00
    Real time used (s):      0.000
    CPU time used (s):       0.000
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A few remarks

● Workers are uniquely identified by the ordinal number 0.n

– Master has always ordinal 0

● For PROOF-Lite, the working directories are under 

            $HOME/.proof/path-where-we-started/...

● The location of the working directory can be changed with

        ProofLite.Sandbox  /tmp
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The sandbox
● Each user get a working space on the cluster (sandbox)

– Default location $HOME/.proof

● The sandbox has several sub-directories
– cache

● Cache package tarballs, selector code and binaries
– packages

● Area where packages are actually build / installed
– session-sessionUniqueID

● Working area for session “sessionUniqueID”
– queries (on master only)

● Where the results of processing are stored
– datasets (on master only)

● Information about datasets

● In PROOF-Lite, queries and session-sessionUniqueID under
      $HOME/.proof/path-from-where-we-started 
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Session Unique ID
● Each PROOF session has a unique ID in the form

                                 hostname-creationtime-processID

     referring to the master (or the client session in PROOF-Lite) 
● The Session Unique ID is used to create the session working 

area in the sandbox
sandbox/session-sessionUniqueID

● The working area contains for each process
– The actual working subdirectory master-0-

processUniqueID  or  worker-0.m-processUniqueID

– Three files: log, environment settings and ROOT environment 
settings

root [] p->GetSessionTag()
(const char* 0x1016c9d50)"macphsft12.local-1334609971-38698"
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First processing (1)
● We are ready to run a first query
● macros/ProofSimple.C,.h defines a TSelector which fills 100 

histograms with gaussian random numbers
● Just do 
root [] p->Process("macros/ProofSimple.C+",10000)
Mst-0: grand total: sent 101 objects, size: 94354 bytes
(Long64_t)0
root []
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First processing (2)
● We can repeat on the local session: the macro 

macros/processLocal.C allows you to do that
● Just do

● Try measure the used time with gROOT->Time() in the two 
cases (PROOF and Local)
– What do you find?

root [] .L macros/processLocal.C
root [] processLocal("macros/ProofSimple.C+",10000)
root []
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The dialog box
active workersSelector being run

Progress
bar

stats

Log dialog box
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The log dialog box
Select logs to display

Grep functionality Save to a fileCan be started also with
TProof::fLogViewer
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Where are the results?
● In the output list ...

root [] gProof->GetOutputList()
(class Tlist*)0x89eae58
root [] gProof->GetOutputList()->ls()
OBJ: TStatus    PROOF_Status     : 0 at: 0x8a264a8
OBJ: TH1F       h0      h0 : 0 at: 0x89d5b48
OBJ: TH1F       h1      h1 : 0 at: 0x8a22de0
OBJ: TH1F       h2      h2 : 0 at: 0x8a21f88
OBJ: TH1F       h3      h3 : 0 at: 0x8a215f8
OBJ: TH1F       h4      h4 : 0 at: 0x8a24100
OBJ: TH1F       h5      h5 : 0 at: 0x8a288b8
OBJ: TH1F       h6      h6 : 0 at: 0x8a31c20
...
OBJ: TH1F       h96     h96 : 0 at: 0x89e9b38
OBJ: TH1F       h97     h97 : 0 at: 0x89ea000
OBJ: TH1F       h98     h98 : 0 at: 0x89ea4c8
OBJ: TH1F       h99     h99 : 0 at: 0x89ea990
root []
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How did they get there?
● Objects wanted back must be added to the list fOutput of the 

selector in the method SlaveBegin
– They can also be added in SlaveTerminate, but then they 

will not be able for feedback

void ProofSimple::SlaveBegin(TTree * /*tree*/)
{
   ...
   fNhist = 100; // number of histos
   ...
   fHist = new TH1F*[fNhist];

   // Create the histogram
   for (Int_t i=0; i < fNhist; i++) {
      fHist[i] = new TH1F(Form("h%d",i), Form("h%d",i), 100, -3., 3.);
      fHist[i]->SetFillColor(kRed);
      fOutput->Add(fHist[i]);
   }
   ...
}
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Create a macro to run PROOF

// macro to steer PROOF running

void runProof(const char *option = “simple”,
              const char *master = “localhost”)
{
   // Get the option into a Tstring for easier manipulation
   TString opt(option);

   // Start or attach to PROOF
   TProof *proof = TProof::Open(master);
   if (!proof) {
      Printf(“runProof: could not get PROOF at '%s'”, master);
      return;
   }

   // Run according to option
   if (opt.Contains(“simple”)) {
      proof->Process(“macros/ProofSimple.C+",10000);
   }
}

macros/runProof.C
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Adding feedback

● PROOF allows to get back the realtime status of the output 
objects for feedback on the ongoing analysis

● The object must be registered in the output list
● The setup is quite simple

// Add the name of the object(s) wanted to the feedback list
proof->AddFeedback("h10");

// Setup something that can display the temporary result
// TDrawFeedback creates on TCanvas per object 
TDrawFeedback fb(proof);
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Feedback on evts per worker

// Create histogram with events per worker
gEnv->SetValue("Proof.StatsHist",1);

// Add the name of the object(s) wanted to the feedback list
proof->AddFeedback("PROOF_EventsHist");

// Setup something that can display the temporary result
// TDrawFeedback creates on TCanvas per object 
TDrawFeedback fb(proof);
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Processing data: H1 example
● Using the chain

● To Process the chain under PROOF

● Could you add a case for this in macros/runProof.C

root [] TProof *p = TProof::Open(“seoul..@localhost”)
root [] chain->SetProof()
root [] chain->Process("macros/h1analysis.C+")

root [] .L macros/createH1Chain.C
root [] TChain *chain = createH1Chain()
root [] chain->Process("macros/h1analysis.C+")
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Processing data: H1 example
● Using the TFileCollection

● Process the TFileCollection

● Why the complication?

root [] p->Process(h1fc, "macros/h1analysis.C+")

root [] TProof *p = TProof::Open(“localhost”)
root [] .L CreateFileCollection.C
root [] TFileCollection *h1fc =
                   CreateFileCollection(“files/h1-http.txt”)
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TFileCollection: the dataset
● The concept of dataset is very useful in HEP: it refers to a 

set of files containing homogeneous data
– e.g. all the data taken during Summer 2009 under 

uniform detector conditions.
● All useful is to refer to a dataset by name
● TFileCollection: named list of TFileInfo
● TFileInfo: most generic way of describing a file

– Multiple URLs, meta-information
● A TFileCollection is the typically the result of a query to a 

catalog
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Datasets in PROOF
● TProof has a set of methods to perform basic operations on 

datasets   
– RegisterDataSet(const char *name, TFileCollection *)

– VerifyDataSet(const char *name)

– ShowDataSets(const char *uri)

– TFileCollection *GetDataSet(const char *name)

– ...
● The name is in the form  /group/user/datasetname

– 'group' is an advanced PROOF concept: by default 
anybody is in group 'default'
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Register / Verify the H1 dataset
● Register the file collection with name that is desired

● Verify the dataset (opens the file, takes a while)

    Verify caches the information: the validation step is much 
faster for verified datasets

root [] TProof *p = TProof::Open(“localhost”)
root [] .L CreateFileCollection.C
root [] TFileCollection *h1fc =
                   CreateFileCollection(“files/h1-http.txt”)
root [] p->RegisterDataSet(“h1-http”, fc);

root [] p->VerifyDataSet(“h1-http”);
...
root [] p->ShowDataSets()
Dataset URI                               | # Files | ...
/default/ganis/h1-http                    |       4 | ...
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Process the H1 dataset
● Process the dataset by name

● Or even do some drawing

root [] p->Process(“h1-http”, "macros/h1analysis.C+")

root [] p->DrawSelect(“h1-http”, "dm_d")
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Loading additional code
● When the selector requires additional code, e.g. A new class 

MyClass, PROOF provides two ways to make it available
– TProof::Load(“MyClass.C”)

● Equivalent of .L on the ROOT shell
● Convenient for simple things

– Package ARchives (PAR)
● Structured archives with build and setup facilities
● Convenient for more complex and stable things, e.g. 

the experiment analysis suite
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PARs
● Zipped tarballs identified by a name and the .par extension, 

e.g. pack.par
● The tarball contains a structure like this

./pack

./pack/PROOF-INF

./pack/PROOF-INF/BUILD.sh

./pack/PROOF-INF/SETUP.C
● The code (.C, .h, makefiles, ...) should be put in the top level 

directory
● BUILD.sh is the script to build the package, e.g. runs 'make'
● SETUP.C is a macro running the final setup 
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PARs
● $ cp $ROOTSYS/tutorials/proof/event.par .
● root [] TProof *p = TProof::Open(“localhost”)
● root [] p->ClearPackages()
● root [] p->UploadPackage(“event.par”)
● root [] p->EnablePackage(“event”)
● root [] p->Exec(“Event *ev = 0”)
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PAR example: event.par
● Have a look at par/event.par

$ tar tzvf par/event.par
drwxr-xr-x ganis/sf          0 2008-07-21 15:17 event/
-rw-r--r-- ganis/sf      13885 2008-07-21 15:17 event/Makefile.arch
-rw-r--r-- ganis/sf       2282 2008-07-21 15:17 event/Makefile
-rw-r--r-- ganis/sf       7902 2008-07-21 15:17 event/Event.h
-rw-r--r-- ganis/sf        259 2008-07-21 15:17 event/EventLinkDef.h
-rw-r--r-- ganis/sf      14695 2008-07-21 15:17 event/Event.cxx
drwxr-xr-x ganis/sf          0 2008-07-21 15:17 event/PROOF-INF/
-rwxr-xr-x ganis/sf        101 2008-07-21 15:17 event/PROOF-INF/BUILD.sh
-rw-r--r-- ganis/sf         86 2008-07-21 15:17 event/PROOF-INF/SETUP.C
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Handling PARs in PROOF
● TProof provides the following methods to work w/ PARs

– UploadPackage(const char *name)

– EnablePackage(const char *name)

– ClearPackage(const char *name)

– ClearPackages()

– ShowPackages()

– ShowEnabledPackages()
● Try to upload and enable par/event
root [] TProof *p = TProof::Open(“localhost”)
root [] p->UploadPackage(“par/event”);
root [] p->ShowPackages();
...
root [] p->EnablePackage(“event”);
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Handling PARs locally
● PAR concept very useful, but currently available only via 

PROOF
● In the local session (i.e. w/o starting PROOF) there are not 

(yet) tools to handle PAR files
–  TPackageManager under preparation 

● The macro macros/loadPackage.C allows you to load a 
package locally to run comparisons between PROOF and 
local sessions

root [] .L macros/loadPackage.C
root [] loadPackage(“par/event”)
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Event example
● How does it work for real processing?
● EventTree_Proc.C and EventTree_ProcOpt.C are selectors 

for 'event' reading different fractions of data
● We need also some files: 10 files, ~750 MB

– files/event-http.txt
● From http://root.cern.ch/data

– files/event-nfs.txt
● From the NFS server /repository/...

● Use createFileCollection to create a TFileCollection

– Define a dataset

– Process it by name
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Event example: details
root [] TProof *p = TProof::Open(“proof..@localhost:3000”)
root [] .L macros/createFileCollection.C
root [] TFileCollection *evtfc =
            createFileCollection(“files/event-http.txt”)
root [] p->UploadPackage(“par/event”)
root [] p->EnablePackage(“event”)
root [] p->Process(evtfc,”macros/EventTree_ProcOpt.C+”)
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Pythia8 example
● This is an example of running a real MonteCarlo simulation 

on PROOF
– PYTHIA8 is the first usable C++ version of a famous HEP 

generator
● It needs a PAR file to setup the environment and and 

environment setting for the sessions (new concept)
● To run the example, we need to link to pythia8 also locally

– I have installed it under /repository/root/pythia8/pro 
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pythia8.par

● Just setups the environment and configuration parameters 
for the generator

● The SETUP.C file

$ tar tzvf par/pythia8.par
drwxr-xr-x mslawins/sf       0 2008-07-03 19:45 pythia8/
-rw-r--r-- mslawins/sf    1521 2008-07-03 19:45 pythia8/main03.cmnd
drwxr-xr-x mslawins/sf       0 2008-07-03 19:46 pythia8/PROOF-INF/
-rw-r--r-- mslawins/sf     233 2008-07-03 19:46 pythia8/PROOF-INF/SETUP.C

void SETUP()
{
   // Load the libraries

   gSystem->Load("$PYTHIA8/lib/libpythia8.so");
   gSystem->Load("libEG");
   gSystem->Load("libEGPythia8");

   // Set the include paths
   gROOT->ProcessLine(".include $PYTHIA8/include");
}
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Pythia8 example (2)
● Pythia8 needs the environment variables PYTHIA8 and 

PYTHIA8DATA set correctly, both locally

    and on the PROOF sessions: how can we set the latter?
● We can set an environment before starting the servers like 

this:

$ export PYTHIA8=/repository/root/pythia8/pro 
$ export PYTHIA8DATA=/repository/root/pythia8/pro/xmldoc

root [] TString env("echo export PYTHIA8=/opt/pythia8/pro;”);
root [] env += “ export PYTHIA8DATA=/opt/pythia8/pro/xmldoc";
root [] TProof::AddEnvVar("PROOF_INITCMD", env.Data())
root [] p = TProof::Open(“proof..@localhost:3000”)
root [] p->Exec("gSystem->Getenv(\"PYTHIA8\")")
(const char* 0xbf8fd94a)"/opt/pythia8/pro"
(const char* 0xbfdd294a)"/opt/pythia8/pro"
(Int_t)(0)



PROOF Tutorial - Part II 38

Pythia8 example (3)
● We can then load the PAR file and run the selector

root [] p->UploadPackage(“par/pythia8”);
root [] p->EnablePackage(“pythia8”);
root [] p->Process(“macros/ProofPythia.C+”,100);
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Summary
We have learned
● How to start PROOF on the local session

● How to run simple generic queries

● How to process a small dataset

● How to draw a variable from a dataset

● How to set the environment

● How to PAR files

Next we can try to run a query on a real cluster at CERN ...
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