
Gerardo Ganis, CERN, PH-SFT
gerardo.ganis@cern.ch

PROOF tutorial
PROOF basics

PROOF Tutorial - Part II 2

Terminology (1)
● Client

– Machine running a ROOT session opening the
connection to the PROOF master

● Master
– PROOF machine running a ROOT application

coordinating the work between workers and merging the
results

● Worker (or Slave)
– PROOF machine running a ROOT application doing the

actual work
● PROOF session

– A set {client, master, workers} started by TProof::Open
● Query

– Process request submitted by the client to the Master;
consists of a selector and possibly a chain

PROOF Tutorial - Part II 3

Terminology (2)
● Package / PAR file

– Additional code needed by the selector, not available on
the PROOF cluster, loaded as a separate library

– Gzipped tarball containing all what needed to enable the
package

● Selector
– A class deriving from TSelector providing the code to be

processed
● Dataset

– Set of files containing the TTree to be processed

– Can be a TChain, TFileCollection, TDSet

– Can be the name of a TFileCollection stored on the
master

PROOF Tutorial - Part II 4

Open a PROOF-Lite session

● Once the daemon is running we can open a
PROOF session

● Now we are ready to go, but ... what's TProof ?

$ root -l
root [0] TProof *proof = TProof::Open("")
 +++ Starting PROOF-Lite with 2 workers +++
Opening connections to workers: OK (2 workers)
Setting up worker servers: OK (2 workers)
PROOF set to parallel mode (2 workers)
(class TProof*)0x8330140
root [1]

PROOF Tutorial - Part II 5

TProof: the PROOF shell
● TProof is the interface class to interact with the PROOF

session
● Everything you will do on the session will be through the

TProof class methods, e.g.
– Print() gives information about the session

– Exec(“CINT command”) allows to execute simple
commands on the workers

– AddInput() make objects available to the selector

– Process(...) allows to run a selector

– GetOutputList() returns the list of output objects

– DrawSelect() allows to draw distributions

– ...
● We will see others as they come in the game

PROOF Tutorial - Part II 6

TProof: gProof
● You can create as many PROOF sessions as you want

– Each session is controlled by its TProof object
● Running TProof::Open again on the same master does not

hurt, just returns the pointer to the existing open session

● The global gProof points to the latest TProof created or
attached

– TProof::cd() allows to change the session pointed to by
gProof

PROOF Tutorial - Part II 7

TProof::Print (1)
● Gives information about the session

$ root [1] p->Print()
*** PROOF-Lite cluster (parallel mode, 2 workers):
Host name: macphsft12.local
User: ganis
ROOT version|rev|tag: 5.32/02|r43514
Architecture-Compiler: macosx64-gcc421
Protocol version: 33
Working directory: /Users/ganis/local/root/opt/root
Communication path: /var/folders/uC/uC0RGjQUFlmzR689bg+JJU+
+0gQ/-Tmp-/plite-38583
Log level: 0
Number of workers: 2
Number of active workers: 2
Number of unique workers: 1
Number of inactive workers: 0
Number of bad workers: 0
Total MB's processed: 0.00
Total real time used (s): 0.000
Total CPU time used (s): 0.000

PROOF Tutorial - Part II 8

TProof::Print (2)
● TProof::Print(“a”) gives full details about the workers

List of workers:
*** Worker 0.0 (valid)
 Worker session tag: 0.0-macphsft12.local-1334609972-38703
 ROOT version|rev|tag: 5.32/02|r43514|5.32/02
 Architecture-Compiler: macosx64-gcc421
 Working directory: /Users/ganis/.proof/local-root-opt-
root/session-macphsft12.local-1334609971-38698/worker-0.0
 MB's processed: 0.00
 MB's sent: 0.00
 MB's received: 0.00
 Real time used (s): 0.000
 CPU time used (s): 0.000
*** Worker 0.1 (valid)
 Worker session tag: 0.1-macphsft12.local-1334609972-38705
 ROOT version|rev|tag: 5.32/02|r43514|5.32/02
 Architecture-Compiler: macosx64-gcc421
 Working directory: /Users/ganis/.proof/local-root-opt-
root/session-macphsft12.local-1334609971-38698/worker-0.1
 MB's processed: 0.00
 MB's sent: 0.00
 MB's received: 0.00
 Real time used (s): 0.000
 CPU time used (s): 0.000

PROOF Tutorial - Part II 9

A few remarks

● Workers are uniquely identified by the ordinal number 0.n

– Master has always ordinal 0

● For PROOF-Lite, the working directories are under

 $HOME/.proof/path-where-we-started/...

● The location of the working directory can be changed with

 ProofLite.Sandbox /tmp

PROOF Tutorial - Part II 10

The sandbox
● Each user get a working space on the cluster (sandbox)

– Default location $HOME/.proof

● The sandbox has several sub-directories
– cache

● Cache package tarballs, selector code and binaries
– packages

● Area where packages are actually build / installed
– session-sessionUniqueID

● Working area for session “sessionUniqueID”
– queries (on master only)

● Where the results of processing are stored
– datasets (on master only)

● Information about datasets

● In PROOF-Lite, queries and session-sessionUniqueID under
 $HOME/.proof/path-from-where-we-started

PROOF Tutorial - Part II 11

Session Unique ID
● Each PROOF session has a unique ID in the form

 hostname-creationtime-processID

 referring to the master (or the client session in PROOF-Lite)
● The Session Unique ID is used to create the session working

area in the sandbox
sandbox/session-sessionUniqueID

● The working area contains for each process
– The actual working subdirectory master-0-

processUniqueID or worker-0.m-processUniqueID

– Three files: log, environment settings and ROOT environment
settings

root [] p->GetSessionTag()
(const char* 0x1016c9d50)"macphsft12.local-1334609971-38698"

PROOF Tutorial - Part II 12

First processing (1)
● We are ready to run a first query
● macros/ProofSimple.C,.h defines a TSelector which fills 100

histograms with gaussian random numbers
● Just do
root [] p->Process("macros/ProofSimple.C+",10000)
Mst-0: grand total: sent 101 objects, size: 94354 bytes
(Long64_t)0
root []

PROOF Tutorial - Part II 13

First processing (2)
● We can repeat on the local session: the macro

macros/processLocal.C allows you to do that
● Just do

● Try measure the used time with gROOT->Time() in the two
cases (PROOF and Local)
– What do you find?

root [] .L macros/processLocal.C
root [] processLocal("macros/ProofSimple.C+",10000)
root []

PROOF Tutorial - Part II 14

The dialog box
active workersSelector being run

Progress
bar

stats

Log dialog box

PROOF Tutorial - Part II 15

The log dialog box
Select logs to display

Grep functionality Save to a fileCan be started also with
TProof::fLogViewer

PROOF Tutorial - Part II 16

Where are the results?
● In the output list ...

root [] gProof->GetOutputList()
(class Tlist*)0x89eae58
root [] gProof->GetOutputList()->ls()
OBJ: TStatus PROOF_Status : 0 at: 0x8a264a8
OBJ: TH1F h0 h0 : 0 at: 0x89d5b48
OBJ: TH1F h1 h1 : 0 at: 0x8a22de0
OBJ: TH1F h2 h2 : 0 at: 0x8a21f88
OBJ: TH1F h3 h3 : 0 at: 0x8a215f8
OBJ: TH1F h4 h4 : 0 at: 0x8a24100
OBJ: TH1F h5 h5 : 0 at: 0x8a288b8
OBJ: TH1F h6 h6 : 0 at: 0x8a31c20
...
OBJ: TH1F h96 h96 : 0 at: 0x89e9b38
OBJ: TH1F h97 h97 : 0 at: 0x89ea000
OBJ: TH1F h98 h98 : 0 at: 0x89ea4c8
OBJ: TH1F h99 h99 : 0 at: 0x89ea990
root []

PROOF Tutorial - Part II 17

How did they get there?
● Objects wanted back must be added to the list fOutput of the

selector in the method SlaveBegin
– They can also be added in SlaveTerminate, but then they

will not be able for feedback

void ProofSimple::SlaveBegin(TTree * /*tree*/)
{
 ...
 fNhist = 100; // number of histos
 ...
 fHist = new TH1F*[fNhist];

 // Create the histogram
 for (Int_t i=0; i < fNhist; i++) {
 fHist[i] = new TH1F(Form("h%d",i), Form("h%d",i), 100, -3., 3.);
 fHist[i]->SetFillColor(kRed);
 fOutput->Add(fHist[i]);
 }
 ...
}

PROOF Tutorial - Part II 18

Create a macro to run PROOF

// macro to steer PROOF running

void runProof(const char *option = “simple”,
 const char *master = “localhost”)
{
 // Get the option into a Tstring for easier manipulation
 TString opt(option);

 // Start or attach to PROOF
 TProof *proof = TProof::Open(master);
 if (!proof) {
 Printf(“runProof: could not get PROOF at '%s'”, master);
 return;
 }

 // Run according to option
 if (opt.Contains(“simple”)) {
 proof->Process(“macros/ProofSimple.C+",10000);
 }
}

macros/runProof.C

PROOF Tutorial - Part II 19

Adding feedback

● PROOF allows to get back the realtime status of the output
objects for feedback on the ongoing analysis

● The object must be registered in the output list
● The setup is quite simple

// Add the name of the object(s) wanted to the feedback list
proof->AddFeedback("h10");

// Setup something that can display the temporary result
// TDrawFeedback creates on TCanvas per object
TDrawFeedback fb(proof);

PROOF Tutorial - Part II 20

Feedback on evts per worker

// Create histogram with events per worker
gEnv->SetValue("Proof.StatsHist",1);

// Add the name of the object(s) wanted to the feedback list
proof->AddFeedback("PROOF_EventsHist");

// Setup something that can display the temporary result
// TDrawFeedback creates on TCanvas per object
TDrawFeedback fb(proof);

PROOF Tutorial - Part II 21

Processing data: H1 example
● Using the chain

● To Process the chain under PROOF

● Could you add a case for this in macros/runProof.C

root [] TProof *p = TProof::Open(“seoul..@localhost”)
root [] chain->SetProof()
root [] chain->Process("macros/h1analysis.C+")

root [] .L macros/createH1Chain.C
root [] TChain *chain = createH1Chain()
root [] chain->Process("macros/h1analysis.C+")

PROOF Tutorial - Part II 22

Processing data: H1 example
● Using the TFileCollection

● Process the TFileCollection

● Why the complication?

root [] p->Process(h1fc, "macros/h1analysis.C+")

root [] TProof *p = TProof::Open(“localhost”)
root [] .L CreateFileCollection.C
root [] TFileCollection *h1fc =
 CreateFileCollection(“files/h1-http.txt”)

PROOF Tutorial - Part II 23

TFileCollection: the dataset
● The concept of dataset is very useful in HEP: it refers to a

set of files containing homogeneous data
– e.g. all the data taken during Summer 2009 under

uniform detector conditions.
● All useful is to refer to a dataset by name
● TFileCollection: named list of TFileInfo
● TFileInfo: most generic way of describing a file

– Multiple URLs, meta-information
● A TFileCollection is the typically the result of a query to a

catalog

PROOF Tutorial - Part II 24

Datasets in PROOF
● TProof has a set of methods to perform basic operations on

datasets
– RegisterDataSet(const char *name, TFileCollection *)

– VerifyDataSet(const char *name)

– ShowDataSets(const char *uri)

– TFileCollection *GetDataSet(const char *name)

– ...
● The name is in the form /group/user/datasetname

– 'group' is an advanced PROOF concept: by default
anybody is in group 'default'

PROOF Tutorial - Part II 25

Register / Verify the H1 dataset
● Register the file collection with name that is desired

● Verify the dataset (opens the file, takes a while)

 Verify caches the information: the validation step is much
faster for verified datasets

root [] TProof *p = TProof::Open(“localhost”)
root [] .L CreateFileCollection.C
root [] TFileCollection *h1fc =
 CreateFileCollection(“files/h1-http.txt”)
root [] p->RegisterDataSet(“h1-http”, fc);

root [] p->VerifyDataSet(“h1-http”);
...
root [] p->ShowDataSets()
Dataset URI | # Files | ...
/default/ganis/h1-http | 4 | ...

PROOF Tutorial - Part II 26

Process the H1 dataset
● Process the dataset by name

● Or even do some drawing

root [] p->Process(“h1-http”, "macros/h1analysis.C+")

root [] p->DrawSelect(“h1-http”, "dm_d")

PROOF Tutorial - Part II 27

Loading additional code
● When the selector requires additional code, e.g. A new class

MyClass, PROOF provides two ways to make it available
– TProof::Load(“MyClass.C”)

● Equivalent of .L on the ROOT shell
● Convenient for simple things

– Package ARchives (PAR)
● Structured archives with build and setup facilities
● Convenient for more complex and stable things, e.g.

the experiment analysis suite

PROOF Tutorial - Part II 28

PARs
● Zipped tarballs identified by a name and the .par extension,

e.g. pack.par
● The tarball contains a structure like this

./pack

./pack/PROOF-INF

./pack/PROOF-INF/BUILD.sh

./pack/PROOF-INF/SETUP.C
● The code (.C, .h, makefiles, ...) should be put in the top level

directory
● BUILD.sh is the script to build the package, e.g. runs 'make'
● SETUP.C is a macro running the final setup

PROOF Tutorial - Part II 29

PARs
● $ cp $ROOTSYS/tutorials/proof/event.par .
● root [] TProof *p = TProof::Open(“localhost”)
● root [] p->ClearPackages()
● root [] p->UploadPackage(“event.par”)
● root [] p->EnablePackage(“event”)
● root [] p->Exec(“Event *ev = 0”)

PROOF Tutorial - Part II 30

PAR example: event.par
● Have a look at par/event.par

$ tar tzvf par/event.par
drwxr-xr-x ganis/sf 0 2008-07-21 15:17 event/
-rw-r--r-- ganis/sf 13885 2008-07-21 15:17 event/Makefile.arch
-rw-r--r-- ganis/sf 2282 2008-07-21 15:17 event/Makefile
-rw-r--r-- ganis/sf 7902 2008-07-21 15:17 event/Event.h
-rw-r--r-- ganis/sf 259 2008-07-21 15:17 event/EventLinkDef.h
-rw-r--r-- ganis/sf 14695 2008-07-21 15:17 event/Event.cxx
drwxr-xr-x ganis/sf 0 2008-07-21 15:17 event/PROOF-INF/
-rwxr-xr-x ganis/sf 101 2008-07-21 15:17 event/PROOF-INF/BUILD.sh
-rw-r--r-- ganis/sf 86 2008-07-21 15:17 event/PROOF-INF/SETUP.C

PROOF Tutorial - Part II 31

Handling PARs in PROOF
● TProof provides the following methods to work w/ PARs

– UploadPackage(const char *name)

– EnablePackage(const char *name)

– ClearPackage(const char *name)

– ClearPackages()

– ShowPackages()

– ShowEnabledPackages()
● Try to upload and enable par/event
root [] TProof *p = TProof::Open(“localhost”)
root [] p->UploadPackage(“par/event”);
root [] p->ShowPackages();
...
root [] p->EnablePackage(“event”);

PROOF Tutorial - Part II 32

Handling PARs locally
● PAR concept very useful, but currently available only via

PROOF
● In the local session (i.e. w/o starting PROOF) there are not

(yet) tools to handle PAR files
– TPackageManager under preparation

● The macro macros/loadPackage.C allows you to load a
package locally to run comparisons between PROOF and
local sessions

root [] .L macros/loadPackage.C
root [] loadPackage(“par/event”)

PROOF Tutorial - Part II 33

Event example
● How does it work for real processing?
● EventTree_Proc.C and EventTree_ProcOpt.C are selectors

for 'event' reading different fractions of data
● We need also some files: 10 files, ~750 MB

– files/event-http.txt
● From http://root.cern.ch/data

– files/event-nfs.txt
● From the NFS server /repository/...

● Use createFileCollection to create a TFileCollection

– Define a dataset

– Process it by name

PROOF Tutorial - Part II 34

Event example: details
root [] TProof *p = TProof::Open(“proof..@localhost:3000”)
root [] .L macros/createFileCollection.C
root [] TFileCollection *evtfc =
 createFileCollection(“files/event-http.txt”)
root [] p->UploadPackage(“par/event”)
root [] p->EnablePackage(“event”)
root [] p->Process(evtfc,”macros/EventTree_ProcOpt.C+”)

PROOF Tutorial - Part II 35

Pythia8 example
● This is an example of running a real MonteCarlo simulation

on PROOF
– PYTHIA8 is the first usable C++ version of a famous HEP

generator
● It needs a PAR file to setup the environment and and

environment setting for the sessions (new concept)
● To run the example, we need to link to pythia8 also locally

– I have installed it under /repository/root/pythia8/pro

PROOF Tutorial - Part II 36

pythia8.par

● Just setups the environment and configuration parameters
for the generator

● The SETUP.C file

$ tar tzvf par/pythia8.par
drwxr-xr-x mslawins/sf 0 2008-07-03 19:45 pythia8/
-rw-r--r-- mslawins/sf 1521 2008-07-03 19:45 pythia8/main03.cmnd
drwxr-xr-x mslawins/sf 0 2008-07-03 19:46 pythia8/PROOF-INF/
-rw-r--r-- mslawins/sf 233 2008-07-03 19:46 pythia8/PROOF-INF/SETUP.C

void SETUP()
{
 // Load the libraries

 gSystem->Load("$PYTHIA8/lib/libpythia8.so");
 gSystem->Load("libEG");
 gSystem->Load("libEGPythia8");

 // Set the include paths
 gROOT->ProcessLine(".include $PYTHIA8/include");
}

PROOF Tutorial - Part II 37

Pythia8 example (2)
● Pythia8 needs the environment variables PYTHIA8 and

PYTHIA8DATA set correctly, both locally

 and on the PROOF sessions: how can we set the latter?
● We can set an environment before starting the servers like

this:

$ export PYTHIA8=/repository/root/pythia8/pro
$ export PYTHIA8DATA=/repository/root/pythia8/pro/xmldoc

root [] TString env("echo export PYTHIA8=/opt/pythia8/pro;”);
root [] env += “ export PYTHIA8DATA=/opt/pythia8/pro/xmldoc";
root [] TProof::AddEnvVar("PROOF_INITCMD", env.Data())
root [] p = TProof::Open(“proof..@localhost:3000”)
root [] p->Exec("gSystem->Getenv(\"PYTHIA8\")")
(const char* 0xbf8fd94a)"/opt/pythia8/pro"
(const char* 0xbfdd294a)"/opt/pythia8/pro"
(Int_t)(0)

PROOF Tutorial - Part II 38

Pythia8 example (3)
● We can then load the PAR file and run the selector

root [] p->UploadPackage(“par/pythia8”);
root [] p->EnablePackage(“pythia8”);
root [] p->Process(“macros/ProofPythia.C+”,100);

PROOF Tutorial - Part II 39

Summary
We have learned
● How to start PROOF on the local session

● How to run simple generic queries

● How to process a small dataset

● How to draw a variable from a dataset

● How to set the environment

● How to PAR files

Next we can try to run a query on a real cluster at CERN ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

