
Gerardo Ganis, CERN, PH-SFT
gerardo.ganis@cern.ch

PROOF tutorial
Analyzing trees

PROOF tutorial - I 2

TTree::MakeClass

■ Method to create a class to loop over the TTree,
read the entries and apply an algorithm

■ Do the same for the split case and compare the
resulting classes

root [0] f = TFile::Open("data/event/event_tree_0_1_unsplit.root")
(class TFile*)0x102980580
root [1]
root [1] TTree *t = (TTree *) f->Get("EventTree")
root [2] t->MakeClass("ClassEvtUnsplit")
Info in <TTreePlayer::MakeClass>: Files: ClassEvtUnsplit.h and
 ClassEvtUnsplit.C generated from TTree: EventTree
(Int_t)0

PROOF tutorial - I 3

TTree::MakeClass (2)
■ Modify the macros to plot fNtrack and the Pt of
tracks

□ See examples in macros/ClassEvt

■ Run the two classes on the two files

■ Compare
 TFile::GetFileBytesRead()
 the number of bytes read via file since the start of
 the session

PROOF tutorial - I 4

TTree::MakeSelector

■ The classes produced by MakeClass work fine
but they control the event loop (in Loop()) so that
they cannot be used in PROOF

■ TSelector in the class adapt to event-level
parallelism

■ TSelector does not control the event loop

■ TSelector has been thought for PROOF

PROOF tutorial - I 5

ROOT model: Trees & Selector

PROOF tutorial - I 6

TSelector methods
■ Begin()

□ Called on local session only

■ SlaveBegin()
□ Called in the local session and on PROOF workers

□ This is te place where create output objects

■ Process()
□ Called for each event in the workers

■ SlaveTerminate()
□ Called on workers only

■ Terminate()
□ Called on the client machine

PROOF tutorial - I 7

TTree::MakeSelector (2)

■ Method to create a class to loop over the TTree,
read the entries and apply an algorithm

■ Do the same for the split case and compare the
resulting classes

■ Modify the macros to plot fNtrack and the Pt of
tracks

root [0] f = TFile::Open("data/event/event_tree_0_1.root")
(class TFile*)0x1029829d0
root [1] TTree *t = (TTree *) f->Get("EventTree")
root [2] t->MakeSelector("SelEvt")
Info in <TTreePlayer::MakeClass>: Files: SelEvt.h and
 SelEvt.C generated from TTree: EventTree
(Int_t)0

PROOF tutorial - I 8

Read only used branches

■ Both for ClassEvt and SelEvt you can choose to
read only the required branches

■ You can measure the effect of the selective read

 with TFile::GetFileBytesRead()

 // GetEntry(entry);
 b_event_fNtrack->GetEntry(entry);
 b_fTracks_fPx->GetEntry(entry);
 b_fTracks_fPy->GetEntry(entry);

PROOF tutorial - I 9

Using the TTreeCache

■ Selective pre-fetching and caching is an efficient
way to increase performance when reading over
the network

■ The macro macros/createH1Chain.C defines a
TChain with 4 files from ROOT HTTP

■ The selector macros/h1analysis.C defines a
simple analysis using those files

■ The TTreeCache is enabled with
 TTree::SetCacheSize(Long64_t bytes)

■ Compare running w/ and w/o enabling cache

PROOF tutorial - I 10

Using the TTreeCache (2)

root [0] root [0] .L macros/createH1Chain.C
root [1] TChain *chain = createH1Chain()
root [1] gROOT->Time()
root [2] chain->Process("macros/h1analysis.C+")
…
// Set cache at 30 MB
root [3] chain->SetCacheSize(30*1024*1024)
root [4] chain->Process("macros/h1analysis.C+")
…

● Cache helps also locally when having many processes
 using the disk, like in PROOF

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

