
Gerardo Ganis, CERN, PH-SFT
gerardo.ganis@cern.ch

PROOF tutorial
Introduction to PROOF

PROOF Tutorial - Part II 2

PROOF goals

 Primary target of PROOF was to speed-up TTree
processing by going parallel
 HEP events independent → can split

 Multiple machines → multiply disk I/O
 Multiple machines → multi-process parallelism
 Multi-thread would anyhow been difficult in ROOT

 Too many part not really thread-safe, although things may
change in the future

PROOF Tutorial - Part II 3

 Parallel coordination of distributed ROOT sessions
 Scalability: small serial overhead
 Transparent: extension of the local shell

 Multi-Process Parallelism
 Easy adaptation to broad range of setups
 Less requirements on user code

 Process data where they are, if possible
 Minimize data transfers

 Event-level dynamic load balancing via a pull architecture
 Minimize wasted cycles

 Real-time feedback
 Output snapshot sent back at tunable frequency

 Automatic merging of results

PROOF – Parallel ROOT Facility

PROOF Tutorial - Part II 4

PROOF architecture

PROOF Tutorial - Part II 5

PROOF architecture

● Three-tier Client-Master-Worker architecture
● Flexible Master tier

– Adapt to heterogeneous configurations

– Distribute load of reduction (merging) phase

Applications running on the master and worker nodes are

ROOT applications similar to the one running on the local

machine: the only difference is that they take input from a

network socket instead of the keyboard

PROOF Tutorial - Part II 6

PROOF as a network service

● PROOF is a network service and has its own daemon
● An idle cluster would look like this:

PROOF Tutorial - Part II 7

Setting up a PROOF connection

● Setting up a PROOF connection involves a few steps

PROOF Tutorial - Part II 8

A PROOF session

● The proofserv are ROOT applications net-connected

PROOF Tutorial - Part II 9

What can you expect from your resources

 C cores, U users
 N files to process
 Processing time (Tproc)

 Assuming
 Optimal splitting (~ C/U concurrent jobs at a time)
 Processing time per file (Tfile) independent of the status of

resources

 Large tails in the Tfile distribution ...

T proc=T init
U⋅N
C

⋅T fileT term

PROOF Tutorial - Part II 10

Static … (e.g. multi-process on Grid)

WN1

WN2

WN3

WN4

WN1

WN2

WN3

WN4

WN1

WN2

WN3

WN4

1 2

time
WN4 units

time
WN4 units

time
WN4 units

6

Example: 24 files on 4 worker nodes, one under-performing

The slowest worker node sets
the processing time

PROOF Tutorial - Part II 11

... vs Dynamic (e.g. Proof)

WN1

WN2

WN3

WN4

time
WN4 units

WN1

WN2

WN3

WN4

WN1

WN2

WN3

WN4

1 2

3

time
WN4 units

time
WN4 units

The slowest worker node gets
less work to do: the processing
time is less affected by its under
performance

PROOF Tutorial - Part II 12

Begin() • Create histos, ...
• Define output list

Process()

OK

preselection

analysis

Terminate() • Final analysis,
 fitting, ...

n

1

last

Events

Output List

2

Parallelizable
event loop

Event level parallelism: TSelector framework

Same framework
can be used for
generic ideally
parallel tasks,
e.g. MC simulation

PROOF Tutorial - Part II 13

Trivial / Ideal Parallelism

PROOF Tutorial - Part II 14

Workflow scheme

root

Remote PROOF Cluster

Data

root

root

root

Client –
Local PC

ana.C

stdout/result

node1

node2

node3

node4

ana.C

root

Data

Proof master
Proof slave

Result

Data

Result

Data

Result

Result

PROOF Tutorial - Part II 15

Merging output objects
● PROOF automatically merges objects having a method

Long64_t Merge(TCollection *objectsToBeMerged)
 which is supposed to merge into itself the list of objects

passed in the argument
● All standard output objects (TH1, TH2, TH3, TTree, ...)

provide a Merge method
● For user-defined objects the method has to be provided if

merging is wished
– If the Merge method is not found, the N objects received

by the workers are just sent back to the client as they are

PROOF Tutorial - Part II 16

Documentation
● PROOF documentation not (yet) complete
● The TWiki pages are the most updated source currently

● The standard ROOT class description service is also helpful

● The PROOF section on the ROOT forum allows direct
interaction with the developers and other users

http://root.cern.ch/drupal/content/proof

http://root.cern.ch/root/html/ClassIndex.html

http://root.cern.ch/phpBB2/index.php

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

