PROOF tutorial

Introduction to PROOF

Gerardo Ganis, CERN, PH-SFT
gerardo.ganis@cern.ch

@ .

PROOF goals

= Primary target of PROOF was to speed-up TTree
processing by going parallel
= HEP events independent — can split

= Multip
= Multip
= Multi-t

e machines — multiply disk /O
e machines — multi-process parallelism

nread would anyhow been difficult in ROOT

= Too many part not really thread-safe, although things may
change in the future

PROOF Tutorial - Part I 2

PROOF - Parallel ROOT Facility

= Parallel coordination of distributed ROOT sessions
0 Scalability: small serial overhead
= Transparent: extension of the local shell
= Multi-Process Parallelism
= Easy adaptation to broad range of setups
o Less requirements on user code
= Process data where they are, if possible
= Minimize data transfers
= Event-level dynamic load balancing via a pull architecture
= Minimize wasted cycles
= Real-time feedback
= Output snapshot sent back at tunable frequency

= Automatic merging of results

PROOF Tutorial - Part I 3

PROOF architecture

-~

PROOF enabled facility

-#______________

geographical?onain-‘ \

NOTKETS!

commands;
SCIIPLS

master:

IISLOUEMSH|

e

Network performance: [Less important VERY important

o

PROOF Tutorial - Part I 4

PROOQOF architecture

 Three-tier Client-Master-Worker architecture

* Flexible Master tier
- Adapt to heterogeneous configurations

- Distribute load of reduction (merging) phase

Applications running on the master and worker nodes are
ROOT applications similar to the one running on the local
machine: the only difference is that they take input from a
network socket instead of the keyboard

PROOF Tutorial - Part I 5

@ PROOQOF as a network service

« PROOF is a network service and has its own daemon
* An idle cluster would look like this:

Computing Cluster

client

ROOT

| worker worker-1 |
worker worker-2
worker worker-N

PROOF Tutorial - Part I 6

@ Setting up a PROOF connection

» Setting up a PROOF connection involves a few steps

Computing Cluster

client master
TCP socket, xproofd i . s
ROOT a— =" - 1: login, authentication

Computing Cluster

client master
ROOT = { bﬂq} proofserv 2: fork proofserv

Computing Cluster

client master
ROOT (= { proofserv 3: setup connection (UNIX socket)

PROOF Tutorial - Part I 7

client

A PROOF session

ROOT

Computing Cluster

N

/ master
xproofd
proofserv

worker worker-1
worker worker-2

\ worker worker-N

4

worker-N
xproofd
proofserv

PROOF Tutorial - Part I

@ What can you expect from your resources

= C cores, U users
= N files to process
= Processing time (T poc)

T =T :U'N-Tﬁze+T

proc init C

term

= Assuming
= Optimal splitting (~ C/U concurrent jobs at a time)
= Processing time per file (Tse) independent of the status of

resources

= Large talls in the Ty, distribution ...

PROOF Tutorial - Part I 9

Static ... (e.g. multi-process on Grid)

Example: 24 files on 4 worker nodes, one under-performing

WN1 WN1
WN2 WN2
WN3 WN3
WN4 WN4
time |—p time — o
WN4 units 1 WN4 units 2
WN1
WN2
The slowest worker node sets
WN3 the processing time
WN4

time |
WN4 units

PROOF Tutorial - Part I 10

@ ... Vs Dynamic (e.g. Proof)

00
O OoO
A/% E 3]
WN1 WN1
WN2 WN2
WN3 WN3
WN4 WN4
time |—p time |— -«
WN4 units 1 WN4 units 2
WN1
WN2
The slowest worker node gets
WN3 less work to do: the processing
WN4 time is less affected by its under

performance

time
WN4 units @

PROOF Tutorial - Part I 11

@) Event level parallelism: TSelector framework

Events

* Create histos, ...
* Define output list

l

Process () Output List

Parallelizable

preselection

" ™ event loop
analysis
last s Same framework
- min .) can be used for
o Ter ate () I_=|r_1al analysis, generic ideally
fitting, ... parallel tasks,
v e.g. MC simulation

PROOF Tutorial - Part I

@]

Trivial / Ideal Parallelism

Sequential
Processing

Data

Ev. 1
Ev. 2
Ev. 3
Ev. 4
Ev.5
Ev. &6
Ev.7
Ev. 8
Ev.9
Ev. 10
Ev. 11
Ev.12

Unordered
Processing

Data

Ev. 3
Ewv. 2
Ev. 1
Ewv. 4
Ev. 5
Ev. 8
Ev. B
Ev.7
Ev. 9
Ewv. 12
Ewv. 11
Ewv. 10

Parallel
Processing
Data 1 Data 2 Data 3
Ev. 1 Ev.5 Ev. 9
Ev. 2 Ev. b Ev. 10
Ev. 3 + Ev. 7 + Ev. 11
Ev. 4 Ev. 8 Ev. 12

s s

>
D

PROOF Tutorial - Part I

Workflow scheme

Client —
Local PC

stdout/result

ana.C

>

esu.

Proof master
Proof slave

PROOF Tutorial - Part I 14

@ Merging output objects

« PROOF automatically merges objects having a method
Long64 t Merge(TCollection *objectsToBeMerged)

which is supposed to merge into itself the list of objects
passed in the argument

* All standard output objects (TH1, TH2, TH3, TTree, ...)
provide a Merge method

* For user-defined objects the method has to be provided if
merging is wished
- If the Merge method is not found, the N objects received
by the workers are just sent back to the client as they are

PROOF Tutorial - Part I 15

@) Documentation

 PROOF documentation not (yet) complete
 The TWiki pages are the most updated source currently

http://root.cern.ch/drupal/content/proof

* The standard ROQOT class description service is also helpful

http://root.cern.ch/root/html/Classindex.htmi

« The PROOF section on the ROOT forum allows direct
iInteraction with the developers and other users

http://root.cern.ch/phpBB2/index.php

PROOF Tutorial - Part I 16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

