PROOF tutorial

/O Basics

Gerardo Ganis, CERN, PH-SFT
gerardo.ganis@cern.ch

@ .

The goals of the |/O system

= Be able to save objects in a simple and generic way
= Be able to read back the objects

= On any platform

= Efficiently

= With a different version of the program
= Provided by the language for basics types

[/ Wite to output file
fprintf(fout, “%d %I1d”, aint, alonglong);

// Read frominput file
sscanf(fin, “%d %1d”, &aint, &alonglong);

= Not available by default for new types (classes)

PROOF tutorial - | 2

Streaming and Reflection

= 1/O requires streamers
= Serializing the object to store it into a file
= Rebuild the object from the file info

= Streamers can be complicated beasts
= Data members may be also complex types and the
streamers need to take care of all of that

= Streamers need reflection, i.e. to know
= The types of the data members
= The base class
= Where they are

= Reflection not (yet) available in ISO C++

PROOF tutorial - | 3

Reflection

TMyClass is a class class TMyClass ({

float fFloat;
Long64 t fLong;

};

fLong

o

NG

TMyClass

"fFloat", 4 bytes, is at offset O
"fLong", 8 bytes, is at offset 8

16
14
12
10
38
6
4
2
0

fFloat

Memory Address

Reflection not (yet) available in ISO C++

PROOF tutorial - | 4

Dictionaries: adding reflection to C++

CINT can generate dictionaries, i.e. reflection information
Just needs the class header files

rootcint —-f MyClassDict.cxx TMyClass.h LinkDef.h

Collects reflection data for types requested in Linkdef.h
Stores it in MyClassDict.cxx (dictionary file)

Compile MyClassDict.cxx, link, load: C++ with reflection!

PROOF tutorial - | 5

Reflection by selection

LinkDef.h syntax:

#pragma link C++ class MyClass+;
#ipragma link C++ typedef MyType t;
#pragma link C++ function MyFunc(int) ;
#pragma link C++ enum MyEnum;

PROOF tutorial - | B

Dictionaries are also created by ACLIC

Can simply use ACLIC:

.L MyCode.cxx+

Will create a library MyCode cxx.so with dictionary of all
types in MyCode.cxx automatically!

PROOF tutorial - | 7

ROOT stores objects in ROOT files described by TFile:

TFile* £f = new TFile("afile.root", "NEW");

Options:

“READ” (default): open the file in read mode

“‘NEW?” or “CREATE”: create a new file

‘RECREATE”: create a new file, overwrite existing one
“UPDATE": open a file in update mode

TFile behaves like file system:

f->mkdir ("dir") ;

TFile has a current directory:

f->cd("dir") ;

PROOF tutorial - | 8

Saving objects in TFile

Once the dictionary is available, an object deriving from
TODbject can be written to the file, with default name

root [] £->cd()
root [] object->Write()

or changing the name to "newName”

root [] object->Write ("newName")

Alternative way:

f->WriteObject(object, "name");

PROOF tutorial - | 9

TFile / TDirectory

= A TFile object may be divided in a hierarchy of
directories, like a Unix file system.

= Two I/O modes are supported

- Key-mode (TKey): objects identified by a name (key),
like files in a Unix directory

= OK up to a few thousand objects
= Histograms, geometries, mag fields, etc.
= TTree-mode to store event data
= The number of events may be millions, billions.

PROOF tutorial - | 10

Name Cycles

Create snapshots regularly:
MyObiject;1 <
MyObject;2
MyObiject;3

MyObject

Write() does not replace but append!
but see documentation TODbject::Write()

Use object->Write("name”, TObject::kOverwrite) to remove
old snapshots

PROOF tutorial - | 11

Self-describing files

= Relevant streamer information (dictionary) for
persistent classes written to the file

= ROOT files can be read by foreign readers
7 Support for Backward compatibility

- Files created in 2001 must be readable in
2015

= Classes (data objects) for all objects in a file
can be regenerated via TFile::MakeProject

root [] TFile f(“demo.root”);

root [] f.MakeProject(“dir”,”*” ,"new++") ;

PROOF tutorial - | 12

Browsing files: TBrowser

[EEEN ROOT Object Browser - O X
File Wiew Options Help
[Sc = = [i

| &1l Folders | Contents of *. f'plpparDUUDMKCJ

(CIROOT Fles =]

. e [de s e e [Lt B s e [0 &)

hid h10;1 ki1 hiZ1 hi31 k141 kiS5 hig1 K1l h211 h22;1 k231 k21 k31 h4d

-l

h5;1 hi;1 h7:1

_Objects in directory
/plppa/DM/CJ
eg.

== |A Root file pippa.roo / plppa/DM/CJ/ hB
oo | with two levels of
| directories |
18 Obiects. \ b

PROOF tutorial - | 13

Try to write the TGraphErrors object

* Open a file with new TFile

root [] TFile* f = new TFile("afb.root", "“NEW")

* Write the TGraphErrors object

* Check the file content before and after writing the object
with TFile::ls()

root [] £->1s()

PROOF tutorial - | 14

O Example of key mode

void keyWrite () {
TFile f (“keymode.root”,”new”) ;
THIF h(“hist”,”test”,100,-3,3); exercises/keyMode.C
h.FillRandom(“gaus”,1000) ;

h.Write()
} il L
35| RMS _ 0o8so
30 é—
25 ;—
void keyRead () ({ m;
TFile f (“keymode.root”) ﬁ;
THIF *h = (THLF*)f.Get(“hist”); 10F"
h.Draw() ; > :3. [P
} -3 2 3

PROOF tutorial - | 15

Where his my histogram?

TFile owns histograms (due to historical reasons):

TFile* £ = new TFile("myfile.root")
TH1F* h = new TH1F("h","h",30,-3.,3.);
h->FillRandom(“gaus”) ;

h->Draw () ;

h->Write () ;

Canvas* ¢ = new TCanvas|() ;

c->Write () ;

delete f£;

Histograms automatically deleted: owned by file.
Canvas still there.

PROOF tutorial - | 16

The “I” of /0

Reading is simple:

TFile* £ = new TFile("myfile.root");
TH1F* h = 0;

f->GetObject ("h", h);

h->Draw () ;

delete f;

Remember:
TFile owns histograms! File gone, histogram gone!

PROOF tutorial - | 17

Ownership and TFile

Separate TFile and histograms:

TFile* £ = new TFile("myfile.root");
TH1F* h = 0;

TH1: :AddDirectory (kFALSE) ;
f->GetObject ("h", h);

h->Draw () ;

delete £;

... and h will stay around.

PROOF tutorial - | 18

@ Random Facts On ROOT I/O

« ROOT files are zipped
« Combine contents of TFiles with SROOTSYS/bin/hadd

« Can even open files over the network, e.g.
TFile ("http://myserver.com/afile.root")

including read-what-you-need!

PROOF tutorial - | 19

What is a TFile?
What functions does it have?
Documentation!

User's Guide, Tutorials, HowTo's:

http://root.cern.ch

Reference Guide (full class documentation):

http://root.cern.ch/root/html

PROOF tutorial - |

20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Reflection For C++
	Reflection By Selection
	Why So Complicated?
	Back To Saving Objects: TFile
	Saving Objects, Really
	Slide 10
	Name Cycles
	Slide 12
	Slide 13
	"Where Is My Histogram?"
	Slide 15
	Slide 16
	The "I" Of I/O
	Ownership And TFiles
	Random Facts On ROOT I/O
	PowerPoint Presentation

