
Gerardo Ganis, CERN, PH-SFT
gerardo.ganis@cern.ch

PROOF tutorial
I/O Basics

PROOF tutorial - I 2

The goals of the I/O system

 Be able to save objects in a simple and generic way
 Be able to read back the objects

 On any platform
 Efficiently
 With a different version of the program

 Provided by the language for basics types

 Not available by default for new types (classes)

// Write to output file
fprintf(fout, “%d %lld”, aint, alonglong);

// Read from input file
sscanf(fin, “%d %lld”, &aint, &alonglong);

PROOF tutorial - I 3

Streaming and Reflection

 I/O requires streamers
 Serializing the object to store it into a file
 Rebuild the object from the file info

 Streamers can be complicated beasts
 Data members may be also complex types and the

streamers need to take care of all of that

 Streamers need reflection, i.e. to know
 The types of the data members
 The base class
 Where they are

 Reflection not (yet) available in ISO C++

PROOF tutorial - I 4

TMyClass is a class class TMyClass {
 float fFloat;
 Long64_t fLong;
};

T
M
y
C
l
a
s
s

M
em

or
y

A
dd

re
ss

fLong

fFloat

– 16
– 14
– 12
– 10
– 8
– 6
– 4
– 2
– 0

PADDING
"fFloat", 4 bytes, is at offset 0

"fLong", 8 bytes, is at offset 8

Reflection

Reflection not (yet) available in ISO C++

PROOF tutorial - I 5

CINT can generate dictionaries, i.e. reflection information

 Just needs the class header files

Collects reflection data for types requested in Linkdef.h

Stores it in MyClassDict.cxx (dictionary file)

Compile MyClassDict.cxx, link, load: C++ with reflection!

rootcint –f MyClassDict.cxx TMyClass.h LinkDef.h

Dictionaries: adding reflection to C++

PROOF tutorial - I 6

LinkDef.h syntax:

#pragma link C++ class MyClass+;
#pragma link C++ typedef MyType_t;
#pragma link C++ function MyFunc(int);
#pragma link C++ enum MyEnum;

Reflection by selection

PROOF tutorial - I 7

Can simply use ACLiC:

Will create a library MyCode_cxx.so with dictionary of all
types in MyCode.cxx automatically!

.L MyCode.cxx+

Dictionaries are also created by ACLiC

PROOF tutorial - I 8

ROOT stores objects in ROOT files described by TFile:

TFile behaves like file system:

TFile has a current directory:

TFile* f = new TFile("afile.root", "NEW");

f->mkdir("dir");

f->cd("dir");

TFile

Options:
“READ” (default): open the file in read mode
“NEW” or “CREATE”: create a new file
“RECREATE”: create a new file, overwrite existing one
“UPDATE”: open a file in update mode

PROOF tutorial - I 9

Once the dictionary is available, an object deriving from
TObject can be written to the file, with default name

or changing the name to "newName"

Alternative way:

root [] f->cd()
root [] object->Write()

f->WriteObject(object, "name");

Saving objects in TFile

root [] object->Write("newName")

PROOF tutorial - I 10

 A TFile object may be divided in a hierarchy of
directories, like a Unix file system.

 Two I/O modes are supported
 Key-mode (TKey): objects identified by a name (key),

like files in a Unix directory
 OK up to a few thousand objects

 Histograms, geometries, mag fields, etc.
 TTree-mode to store event data

 The number of events may be millions, billions.

TFile / TDirectory

PROOF tutorial - I 11

Create snapshots regularly:

MyObject;1

MyObject;2

MyObject;3

…

MyObject

Write() does not replace but append!
but see documentation TObject::Write()

Use object->Write(“name”, TObject::kOverwrite) to remove
old snapshots

Name Cycles

PROOF tutorial - I 12

 Relevant streamer information (dictionary) for
persistent classes written to the file

 ROOT files can be read by foreign readers
 Support for Backward compatibility
 Files created in 2001 must be readable in

2015
 Classes (data objects) for all objects in a file

can be regenerated via TFile::MakeProject

root [] TFile f(“demo.root”);

root [] f.MakeProject(“dir”,”*”,”new++”);

Self-describing files

PROOF tutorial - I 13

A Root file pippa.root
with two levels of

directories

Objects in directory
/pippa/DM/CJ

eg:
/pippa/DM/CJ/h15

Browsing files: TBrowser

PROOF tutorial - I 14

● Open a file with new TFile

● Write the TGraphErrors object

● Check the file content before and after writing the object
with TFile::ls()

root [] TFile* f = new TFile("afb.root", “NEW”)

Try to write the TGraphErrors object

root [] f->ls()

PROOF tutorial - I 15

void keyWrite() {

 TFile f(“keymode.root”,”new”);

 TH1F h(“hist”,”test”,100,-3,3);

 h.FillRandom(“gaus”,1000);

 h.Write()

}

void keyRead() {

 TFile f(“keymode.root”);

 TH1F *h = (TH1F*)f.Get(“hist”);

 h.Draw();

}

Example of key mode

exercises/keyMode.C

PROOF tutorial - I 16

TFile owns histograms (due to historical reasons):

Histograms automatically deleted: owned by file.

Canvas still there.

TFile* f = new TFile("myfile.root");
TH1F* h = new TH1F("h","h",30,-3.,3.);
h->FillRandom(“gaus”);
h->Draw();
h->Write();
Canvas* c = new TCanvas();
c->Write();
delete f;

Where his my histogram?

PROOF tutorial - I 17

Reading is simple:

Remember:
TFile owns histograms! File gone, histogram gone!

TFile* f = new TFile("myfile.root");
TH1F* h = 0;
f->GetObject("h", h);
h->Draw();
delete f;

The “I” of I/O

PROOF tutorial - I 18

Separate TFile and histograms:

… and h will stay around.

TFile* f = new TFile("myfile.root");
TH1F* h = 0;
TH1::AddDirectory(kFALSE);
f->GetObject("h", h);
h->Draw();
delete f;

Ownership and TFile

PROOF tutorial - I 19

Random Facts On ROOT I/O

● ROOT files are zipped
● Combine contents of TFiles with $ROOTSYS/bin/hadd
● Can even open files over the network, e.g.

 TFile("http://myserver.com/afile.root")

 including read-what-you-need!

PROOF tutorial - I 20

What is a TFile?
What functions does it have?
Documentation!

User's Guide, Tutorials, HowTo's:

http://root.cern.ch
Reference Guide (full class documentation):

http://root.cern.ch/root/html

HELP!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Reflection For C++
	Reflection By Selection
	Why So Complicated?
	Back To Saving Objects: TFile
	Saving Objects, Really
	Slide 10
	Name Cycles
	Slide 12
	Slide 13
	"Where Is My Histogram?"
	Slide 15
	Slide 16
	The "I" Of I/O
	Ownership And TFiles
	Random Facts On ROOT I/O
	PowerPoint Presentation

