
Gerardo Ganis, CERN, PH-SFT
gerardo.ganis@cern.ch

PROOF tutorial
Analyzing D3PD

PROOF tutorial - I 2

Introduction

■ The D3PD are the files currently used for ATLAS
analysis

■ Nothing special in principle, but there are some
things to be kept in mind when processing them
on PROOF especially if the files are read from
DPM or dCache

■ Dissecting a working example allows also to
show other useful PROOF functionality

PROOF tutorial - I 3

D3PD file content

■ The D3PD files contain two TTrees
□ 'CollectionTree', 5, branches

□ 'physics', 7493 branches

■ The 'physics' tree is a split tree with a large
number of branches

■ Automatically generated TSelectors or classes
have large number of members, branches and
branch address setters.

□ Difficult to read/manage the header file

□ Takes very long to compile

PROOF tutorial - I 4

Running SelPhysics

■ Under 'd3pd': SelPhysics.h, .C

■ Creates:
□ 2 histograms, 1 TTree

□ Merges via file

■ Example of
□ How to use parameters to control running

□ Merge objects via file

□ Access files via PROOF itself

PROOF tutorial - I 5

TProofOutputFile

■ Allows to steer automatic merging via file

■ Objects are written to the associated file

■ The TProofOutputFile object is added to fOutput

■ TProofOutputFile::Merge takes care to produce a
merged file …

□ … or a dataset for the files

■ In the future this will be all automatized ...

PROOF tutorial - I 6

PROOF w/ DPM/dCache

■ DPM (Disk Pool Manager) and dCache are two
different ways to manage files

■ Their purpose is very different but from the user
point of view the allow access at files

■ Both they provide an 'XROOTD door', which
means that they can be accessed with the
XROOTD client

□ This is typically they way it is done in ATLAS

■ This works well for pure file access, but certain
the related TSystem implementation (file
discovering, etc …) is not complete

PROOF tutorial - I 7

PROOF w/ DPM/dCache (2)

■ That's where there some problems with PROOF

■ The main reason is that all what is file
discovering in PROOF is very XROOTD oriented
(conceptually)

■ So 'Validation' and dataset handling does not
work out of the box ...

■ … but there are some tricks

■ The coming versions of DPM should solve the
issues (not sure for dCache)

PROOF tutorial - I 8

PROOF file lookup

■ During the 'Validation' step PROOF tries to locate
the files, i.e. to know on which processing node, if
any, the files are

■ If the files are on external storage elements this
operation should just transparently say so; but for
the DPM and dCache XRD-doors this blocks, so it
needs to be skipped

■ Unfortunately there is no way to find this out
automatically

// Skip the lookup step
proof->SetParameter("PROOF_LookupOpt", "none");

PROOF tutorial - I 9

Dataset manipulation

■ Similarly, the usual tools to make datasets useful
do not work

■ The workaround consist in
□ A PAR file pars/DSVerify.par

− Contains a TSelector dedicated to file verification, in
parallel

□ A few macros tools/registerDataSet.C
− Use DSVerify to register and verify datasets

PROOF tutorial - I 10

DSVerify

■ Shows a different usage of TSelector
□ Not only data processing

■ It has to be used with a different 'Packetizer'
which distributes 'files' instead of events

□ TPacketizerFile

□ Works on list of files
−The 'event' is the file on which something has to be done

□ It could be used to parallelize at file-level the
execution of programs/macro taking a file as input

PROOF tutorial - I 11

tools/registerDataSet.C

■ Contains three functions
□ Int_t registerDataSet(TFileCollection *fc, ...)

− Steers the setup of TPacketizerFile to verify and register
the file collection 'fc'

□ Int_t verifyDataSet(const char *dsn, ...)
− Verify an already registered dataset, called 'dsn'

□ Int_t registerDataSet(const char *filewithlist,
 const char *dsname, …)
− Wrapper to the above starting from a file list

PROOF tutorial - I 12

makeZee.C

■ Shows how to use the tools in registerDataSet.C

■ Creates a dataset named 'Zee'

root[] TProof *p = TProof::Open("<master>");
root[] gROOT->ProcessLine(".L tools/registerDataSet.C+");
root[] registerDataSet("data/AlpgenJimmyZeeNp2_pt20.txt","Zee");

PROOF tutorial - I 13

runProofFC.C
■ Shows how to process a TFileCollection

 void runProofFC (const char *where = "pod://",
 const char *filewithlist = "data/AlpgenJimmyZeeNp2_pt20.txt")
{
 TProof *p = TProof::Open(where);
 if (!p) {
 Printf("Could not start PROOF at %s", where);
 return;
 }
 p->Load("src/SelPhysics.C+");
 gROOT->ProcessLine(".L tools/getTFileCollection.C+");
 TFileCollection *fc = getTFileCollection();

 p->SetParameter("PROOF_LookupOpt", "none");

 gROOT->ProcessLine(".L tools/getProofInfo.C+");
 TString datadir = getProofInfo("datadir");
 p->SetParameter("PROOF_OUTPUTFILE",
 TString::Format("%s/SelPhysicsOut.root", datadir.Data()));

 p->Process(fc, "SelPhysics");
}

PROOF tutorial - I 14

runProof.C
■ Shows how to process a named dataset

 void runProof(const char *where = "pod://",
 const char *dsname = "Zee") {
 TProof *p = TProof::Open(where);
 if (!p) {
 Printf("Could not start PROOF at %s", where);
 return;
 }

 p->Load("src/SelPhysics.C+");

 gROOT->ProcessLine(".L tools/getProofInfo.C+");
 TString datadir = getProofInfo("datadir");
 p->SetParameter("PROOF_OUTPUTFILE",
 TString::Format("%s/HwwOut.root", datadir.Data()));

 p->Process(dsname, "SelPhysics");
}

PROOF tutorial - I 15

tools/getProofInfo.C

■ Example of how to extract information from
PROOF using

□ Output redirection

□ Parsing with TMacro, TString

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

