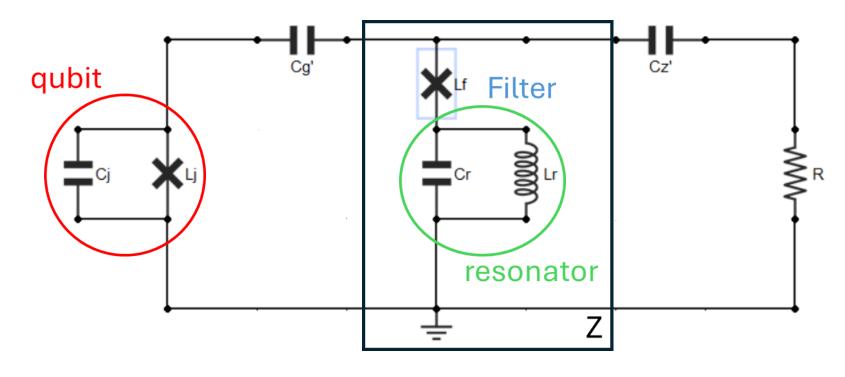

QUART&T WP2 Meeting 18/11/2025

Ongoing activities in WP2 at INFN-BO

Simona Zaccaria

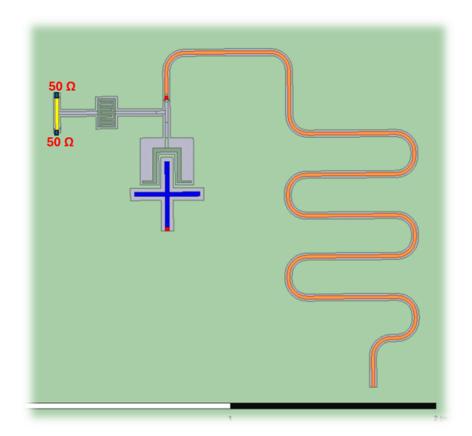


Outline

- Design of a notch Purcell filter
- Design for analog simulation of 1D Ising model for phase transition

Purcell filter design

- $L_{
 m f}$ implemented with JJ arrays
- Notch band very narrow:


TUNING OF $L_{\rm f}$ REQUIRED !!

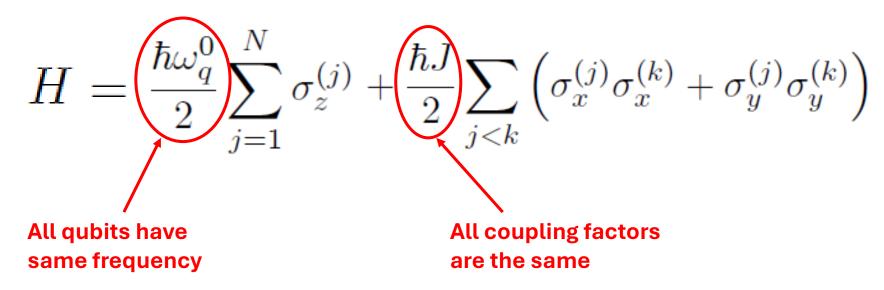
 $L_{\rm f}$ is sized such that $Z(\omega_q)=0$

$$L_{\rm f}$$
= $-\frac{L_{\rm r}}{1-\frac{\omega_q^2}{\omega_r^2}}$ Qubit mode
$$=\frac{1}{\sqrt{L_r \times C_r}}$$

$$\omega_q > \omega_r$$

Purcell filter design

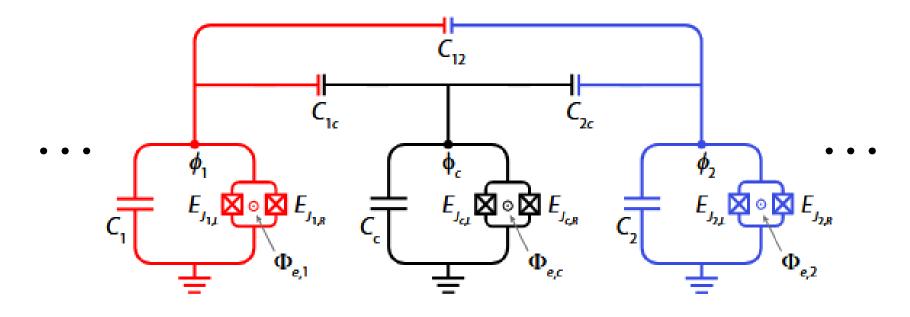
Parameter	Value
Qubit mode frequency f_q	$6.45\mathrm{GHz}$
Resonator mode frequency f_r	$6.87\mathrm{GHz}$
Filter mode frequency f_f	$3.66\mathrm{GHz}$
Dispersive shift χ_{qr}	$12\mathrm{MHz}$
Resonator self-Kerr α_r	$0.5\mathrm{MHz}$
Linewidth κ_r	$10\mathrm{MHz}$
Purcell-limited T_1	$5\mathrm{ms}$
Critical photon number n_{crit}	30


The simulations were performed using both Ansys HFSS, QuCAT and QuLTRA Python package.

Presented at SQA conference 2025 & published in IEEE-TAS

https://ieeexplore.ieee.org/document/11164455

1D Ising model for phase transition


Based on work proposed by prof. Ercolessi's presented on WP1

Two possible analog simulations:

- Simulation of the dynamics of the system
- Ground state calculation

Dynamics of the system

- Linear chain of qubits coupled through a tunable coupler
- We can perturb the system, let it evolve, and then measure it.

WARNING: Because of the tunable couplers, the total number of qubits increases. Simulating a three-body Ising model requires five qubits!!

Ground state of the system

$$H = \frac{\hbar\omega_q^0}{2} \sum_{j=1}^N \sigma_z^{(j)} + \frac{\hbar J}{2} \sum_{j < k} \left(\sigma_x^{(j)} \sigma_x^{(k)} + \sigma_y^{(j)} \sigma_y^{(k)} \right)$$

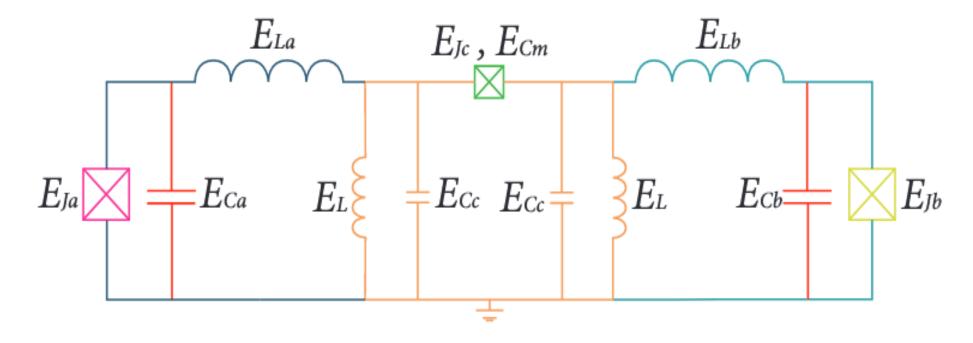
Varying the parameter $\lambda \equiv \frac{\omega_q^0}{2J}$ the system can become paramagnetic

or ferromagnetic. The aim is to slowly vary λ and observe the ground state evolution of the system

$$\begin{array}{c|c}
 & \text{PARA} & \text{FERRO} \\
\hline
 & \langle \sigma_z^j \rangle = 0 & \lambda_c & \langle \sigma_z^j \rangle \neq 0
\end{array}$$

Ground state of the system

ISSUE: The previously proposed architecture with transmon qubits does not yield strong qubit-qubit coupling.


 λ <1 cannot be achieved, preventing the observation of the phase transition.

One possible solution is to use fluxonium qubits [1]

$$H_{\text{eff}} = -\sum_{\mu=a,b} \frac{\omega_{\mu}}{2} \sigma_{z}^{\mu} - \Omega_{\mu} \sigma_{x}^{\mu} + J \sigma_{x}^{a} \sigma_{x}^{b} + \zeta \sigma_{z}^{a} \sigma_{z}^{b}$$

[1] https://arxiv.org/abs/2309.05720 Tunable inductive coupler for high-fidelity gates between fluxonium qubits

Ground state of the system

Structure under investigation through QuTip simulations

[1] https://arxiv.org/abs/2309.05720 Tunable inductive coupler for high-fidelity gates between fluxonium qubits