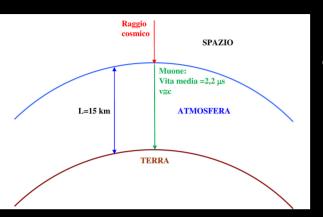


Il telescopio per la misura dei muoni


Antonio Iuliano

Gli sciami atmosferici estesi e la componente muonica

- Cosa sono i muoni e quali sono le loro caratteristiche principali?
- sono particelle simili agli elettroni, ma hanno una massa 200 volte maggiore;
- Attraversano i materiali perdendo poca energia;
- ogni minuto veniamo attraversati da migliaia di muoni, essi contribuiscono alla dose di radioattività naturale a cui siamo soggetti;
- Nonostante abbiano una vita media di 2.2 milionesimi di secondo, arrivano fino alla superficie della terra e si fermano dopo aver attraversato decine di metri sottoterra in strati di roccia.
- Flusso muoni al livello del mare:
 - 1 μ/(cm² minuto)

Il mistero dei muoni: come fanno ad arrivare fino a noi?

Quanta strada possono fare i muoni prima di decadere?

$$\mu^- \to e^- + \bar{\nu}_e + \nu_\mu$$

$$S = v * t_0 \sim c * t_0 = 3 \times 10^8 m/s \cdot 2.2 \times 10^{-6} s \sim 660 \text{ m}$$

- In 1 s, circa 5000 muoni ci hanno attraversato.
- Ma l'atmosfera non era spessa circa 15000 m?
- Come fanno i muoni ad arrivare a terra se muiono dopo 660 m?

La relatività ristretta (1905)

 Lo spazio e il tempo non sono grandezze assolute, cambiano mettendosi in un diverso sistema di riferimento.

Il tempo si dilata:

$$t = yt_0$$

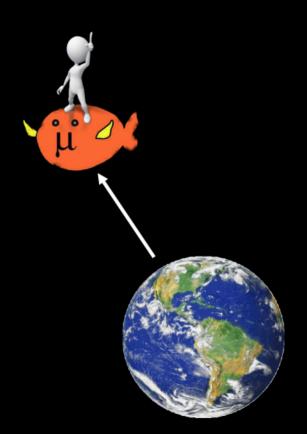
Lo spazio si restringe:

$$L = L_0/\chi$$


- Se v<<c, v2/c2 \rightarrow 0, y \rightarrow 1 fisica classica
- Se gli oggetti vanno piano, non ci accorgiamo di questi effetti.
- y=25 se v=0.9992c come nel caso del nostro muone.

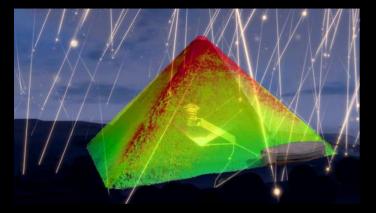
Sistema di riferimento dell'osservatore

- y=25 se v=0.9992c come nel caso del nostro muone
- t₀ = tempo "proprio" dell'evento:
 un evento che accade in un luogo, visto
 da un osservatore che sta fermo in quel
 luogo avrà una certa durata t0


$$t = y \cdot t_0 = 25 \cdot 2.2 \ \mu s = 55 \ \mu s$$

 $S = v \cdot t = 3 \cdot 10^8 \ m/s \cdot 55 \cdot 10^{-6} \ s \sim$ **16 km**

• Il tempo di vita per i muoni si è dilatato e circa il 40% arriva sulla Terra.

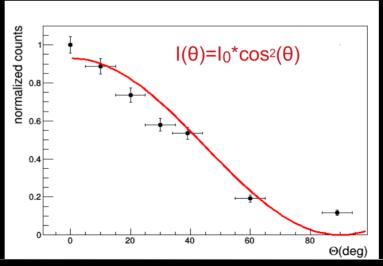


Sistema di riferimento solidale al muone

- y=25 se v=0.9992c come nel caso del nostro muone
- Le lunghezze, come ad esempio lo spessore dell'atmosfera, che per l'osservatore solidale al muone è in movimento, si accorciano.
- L = L0/y = 15000 m/25 = 600 m
- Per i muoni l'atmosfera è spessa 600 m, possono percorrerla tutta e raggiungere la Terra in 2.2 μs.

Muongrafia

La capacità di attraversare grandi spessori di materia (km di roccia) permette di utilizzare i muoni per fare vere e proprie radiografie di strutture di grandi dimensioni, proprio come i raggi X per il corpo umano.

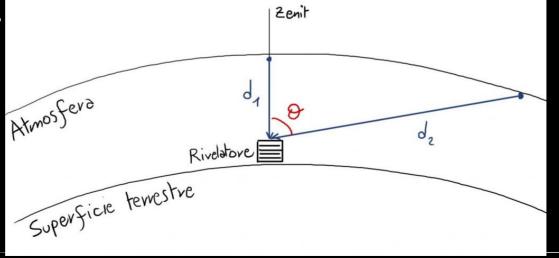

La prima applicazione della muografia fu realizzata a fine anni '60 nella piramide di Chephren.

Un muografo è posizionato anche all'interno del tunnel borbonico, a 35 metri di profondità nel centro storico della città di Napoli.

Il flusso di muoni in funzione dell'angolo di zenith

- Il flusso di muoni a terra non è uniforme al variare dell'angolo di incidenza.
- Analizzando le direzioni di arrivo di queste particelle in funzione dell'angolo che esse formano con lo zenit locale, si scopre che il flusso massimo si ha per $\theta=0^{\circ}$ ossia per particelle che arrivano perpendicolarmente alla superficie terrestre.

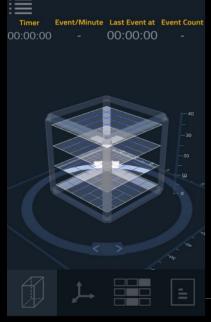
• Il flusso diminuisce continuamente all'aumentare dell'angolo tra la direzione di incidenza e lo zenit. A 90° il flusso è minimo.

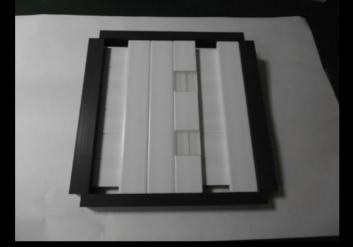


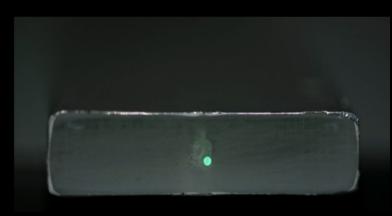
Spiegazione decrescita del flusso

- Diversi effetti sono responsabili di questo comportamento, tra questi, il cammino percorso dalle particelle cosmiche attraverso l'atmosfera
- Al crescere dell'angolo di zenit, la distanza tra il punto di produzione del muone in atmosfera e il rivelatore sulla superficie terrestre cresce a sua volta

 Maggiore è l'angolo dallo zenit, maggiore è la distanza percorsa e maggiore sarà la probabilità che i muoni decadano prima di raggiungere la superficie terrestre e


quindi il flusso sarà minore.

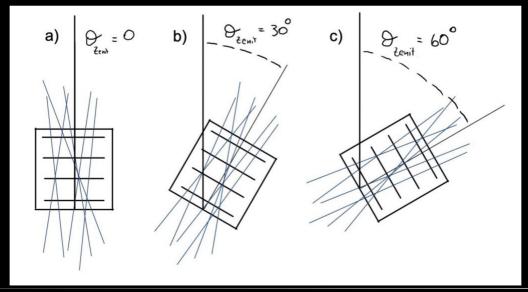



Il Cosmic Ray Cube (CRC): un rivelatore portatitle di muoni

 Il rivelatore è un cubo di lato 30cm, costituito da quattro moduli distanziati tra loro di 7 cm. Ogni modulo è costituito da 2 piani, ciascuno costituito da 6 bacchette scintillanti sovrapposte e posizionate ortogonalmente tra loro per consentire una lettura bidimensionale dei nostri dati

Cioè possiamo leggere la traccia del muone su due piani, il piano zx e il piano zy.

Come si fanno le misure?


Il numero di muoni (conteggi, C) incidenti nel rivelatore in un intervallo di tempo (T) prende il nome di rate

(R=C/T) espresso in particelle al secondo. I passi da fare sono I seguenti:

- Prendo dati per un tempo T;
- Conto il numero di particelle registrate C;
- Calcolo il rate R delle particelle come: R = C / T (particelle/secondo).
 Esempio:
- Prendo dati per 100 secondi (T=100 secondi);
- Lo strumento registra C=1000 particelle;
- R = C / T = 1000/100 = 10 particelle/secondo;
- Fissato un tempo, misurare la dipendenza dei conteggi dall'angolo di inclinazione

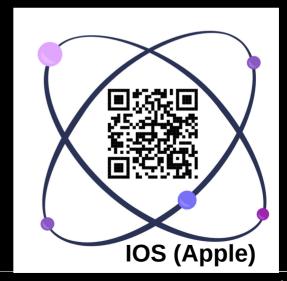
Come si fanno le misure?

Il rivelatore, inizialmente posizionato con l'asse parallelo allo zenit locale (a), viene inclinato ad angoli via via sempre maggiori: 30° (b), 60° (c) fino a posizionarlo orizzontalmente.

Collegarsi al CRC di Roma 3 con culla automatizzata

- Per effettuare le misure in funzione dell'angolo useremo un CRC montato in una base mobile, comandabile a distanza
- Il telescopio è localizzato all'INFN di Roma 3, potremo comandarlo con lo stesso programma usato per la visualizzazione dei dati, impostando l'angolo di rotazione
- SetAngleGPS (attendere il tempo di posizionamento all'inclinazione desiderata)

<u>Organizziamo e analizziamo i dati</u>


- Riempire una tabella angolo conteggi
- Grafico a dispersione dei conteggi in funzione dell'angolo
- Come cambia se viene fatto un grafico in funzione del cosen quadro dell'angolo?

Cosmic Rays Live App

- Potete visualizzare gli stessi dati che vedrete sul computer sul vostro smartphone.
- Possibilità di scegliere quale telescopio volete osservare, e di salvare una tabella di dati sul vostro telefono

