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The Inverse Problem
● The Forward Problem (Normal Problem)

○ Use the model parameters to calculate the 
observables

● The Inverse Problem
○ Use the results of actual observables to infer the 

values of the parameters characterizing the system

● Challenges
○ Ill-posedness

■ Different values of the model parameters may 
be consistent with the observables

○ Curse of Dimensionality

■ Need to explore a huge, high-dimensional 
parameter space

x y

y = f(x)

x = f -1(y)

parameters observables

Forward Problem (Normal Problem)

Inverse Problem



Ill-posedness of Inverse Problems

Forward Mapper Backward Mapper

well-posed ill-posed
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Fundamental Idea
Variational Autoencoder Inverse Mapper

Inverse Problem VAIM
ill-posed well-posed



Variational Autoencoder Inverse Mapper Architecture

Variational Autoencoder Inverse Mapper

Parameters

Predicted 
Observables

Reconstructed 
Parameters

Latent 
Variables



Forward Mapper and Backward Mapper



Math behind Variational Autoencoder Inverse Mapper

● Approximate
○ True posterior distribution 

𝑝ሺ𝐳|𝐱, 𝐲ሻ
● Variational Inference

○ Learn an approximate 
distribution 𝑞ሺ𝐳|𝐱, 𝐲ሻ
such that 
𝑞ሺ𝐳|𝐱, 𝐲ሻ~𝑝ሺ𝐳|𝐱, 𝐲ሻ

○ Minimize the Kullback-Leibler 
(KL) divergence
min𝐾𝐿ሺ𝑞 𝐳 𝐱, 𝐲 ||𝑝ሺ𝐳|𝐱, 𝐲ሻ)

● Variational Autoencoder Theory
min𝐾𝐿ሺ𝑞 𝐳 𝐱, 𝐲 ||𝑝ሺ𝐳|𝐱, 𝐲ሻ)

equivalent to

○ True prior distribution 𝑝ሺ𝐳ሻ
○ Select tractable distribution 

easy to generate
○ Gaussian
○ Uniform



VAIM on Toy Inverse Problems
Latent Space DistributionMultiple Solutions

Sign Information

𝑓 𝑥 ൌ 𝑥ଶ

Period Information

𝑓 𝑥 ൌ sin 𝑥
𝑥 ∈ ሾെ2𝜋, 2𝜋ሿ

Radius and Polar Angle 
Information

Type equation here.

𝑓 𝑥଴, 𝑥ଵ
ൌ 𝑥଴ଶ ൅ 𝑥ଵଶ

𝑓 𝑥଴, 𝑥ଵ ൌ 1.0



Comparison with Mixture Density Network (MDN)



Comparison with Invertible Neural Networks (INN)
● Invertible Neural Networks (INN)

○ Maximum Mean Discrepancy (MMD)

○ Degrade polynomially at best as dimension 
increases 

● VAIM

○ KL-divergence

○ Degrade constantly as dimension increases

○ Forward and Backward Mappers can adopt 
different NN Architectures

Ardizzone et al., arXiv:188.04730



Diffusion Model for Inverse Problems

𝑓 𝑥 ൌ 𝑥ଶ



Toy Example

 𝒙𝟐 ൅ 𝒚𝟐 ൌ 𝒛

 Training samples: 𝒛 ∈ ሾ𝟎,𝟒ሿ



Active Learning

Diffusion ModelTest
Events

Predicted 
Parameters

Forward Model Generated 
Events

New Training 
Samples

Update



Toy Example: Active Learning
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Extraction of Quantum Correlation 
Functions from Deep-inelastic Lepton-
Nucleon Scattering (DIS) Data

● Observables

● PDFs with DGLAP like behavior

● Shape parameters                                                          are parameterized as

Phase Space



VAIM Results in Toy DIS Problem 



Point Cloud-based VAIM (PC-VAIM)

Regular, discretized kinematic bins of x
and Q2 where cross sections are 

evaluated 

Kinematic bins of SLAC, NMC, HERA, and BCDMS 
experiments

Limitation of VAIM: Observables across 
regular, discretized kinematic bins

Reality: Observables are ill-defined
Data in different experiments are observed on different 

kinematic bins



PC-VAIM Architecture

Overall Architecture Backward Mapper: A PointNet-based architecture is 
used to handle the point cloud observable input



PC-VAIM on Extracting 
QCFs from Grid-Independent 
DIS data

Parameter regions from which the 
training samples are drawn (orange), the 

control data (red), and PC-VAIM 
predictions (green band)

PC-VAIM predictions on 1, 000 simulated control samples given by σp
sim and 

σn
sim. (a) Reconstructed observable σp and σn for the PC-VAIM predicted 

parameters using physics theory model. (b) PDFs for the “up” and “down” 
quarks produced by physics theory model corresponding to the predicted 

parameters. (c) Ratio of the reconstructed observables over the true 
observables. (d) Ratio of the reconstructed PDFs over the true. PC-VAIM 

correctly learns the mapping between the observable space and the PDF space.
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Extraction of Compton Form factors

● Generalized Parton Distributions (GPDs)
○ Multi-dimensional descriptions of proton structure

● Deeply virtual exclusive scattering processes 
○ Golden channel for the extraction of information on partonic 3D dynamics in the nucleon

● Compton Form Factors (CFFs) 
○ 2D Slices of GPDs

○ Measured in Deeply Virtual Compton Scattering (DVCS)

○ Contain potentially new information on hadronic structure



Extraction of CFFs as an Inverse Problem
● Extraction of 8 CFFs from a single polarization observable

○ An inverse problem of extracting 8 unknowns from a single equation

○ Quantification of information extracted from experiments

𝑅𝑒 𝐻 , 𝐼𝑚 𝐻 ,𝑅𝑒 𝐻෩ , 𝐼𝑚 𝐻෩ ,𝑅𝑒 𝐸 , 𝐼𝑚 𝐸 ,𝑅𝑒 𝐸෨ , 𝐼𝑚 𝐸෨



Conditional VAIM Architecture for CFF Extraction
Cross Sections



Training of Conditional VAIM

● Training Data:
○ Kinematics values

○ Generate uniformly distributed CFFs

○ Compute cross sections 

• 𝑅𝑒𝐻 ∈ െ4, 4
• 𝑅𝑒𝐸 ∈ െ4, 4
• 𝑅𝑒𝐻෩ ∈ െ10, 10
• 𝑅𝑒𝐸෨ ∈ െ10, 30

• 𝐼𝑚𝐻 ∈ െ1, 5
• 𝐼𝑚𝐸 ∈ െ1, 5
• 𝐼𝑚𝐻෩ ∈ െ1, 20
• 𝐼𝑚𝐸෨ ∈ െ10, 30



Prediction of CFFs
● Predicted CFFs from VAIM-CFF

○ XBj = 0.343

○ t = -0.172 GeV2

○ Q2 = 1.820 GeV2

Latent Space Analysis



Training C-VAIM on 
Different Cross-section 
Formulations 

● Two Cross-section Formulations
○ FemtoNet (UVA)

○ BKM (Belitksy, Kirchner, Mueller)
● Kinematics

○ XBj = 0.35

○ t = 0.172

○ Q2 = 1.9 GeV2

○ Eb = 5.75 GeV
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Experiment

Hadronic Structure High Energy 
Scattering Experiments

Observed 
Events

DetectorAccelerator

Inverse Problem Inverse Problem

Observed
Event

Distribution

Reconstructed
Vertex

Distribution

Theory

Inverse Inference



GAN-based Workflow for Event-level Analysis

Event-level Analysis



Sampling



A Critical Obstacle in Backpropagation: Gradient over Sampling 

Gradient?



Sampling Algorithms

• Inverse CDF
– Can provide meaningful gradient
– Only works in 1D

• Markov Chain Monte Carlo (Gaussian proposal function)
– Random walk
– Can work in higher dimensionality
– No useful gradient



Two Possible Solutions

• Make the Sampling Method Differentiable
– LOITS (by Nobuo Sato)

• Build a Surrogate Model
– Neural Network
– Approximate the sampling process
– Differentiable
– Easy to incorporate in the event-based analysis workflow

Theoretical 
Cross-

section

Idealized 
Theory 
Events

Sampling



LOITS

 Procedure (proposed by Nobuo Sato)

○ Partition space into grid cells

○ Compute the distribution value at each grid point

○ Sample each grid cell

 Compute marginal distribution in each dimension

 1D inverse CDF in each dimension

 Assemble the samples (Approximate)

 MCMC Correction (Precise)

● Ratio ൌ ௣ ௣௥௢௣ ௣ಽೀ಺೅ೄሺ௖௨௥௥ሻ
௣ ௖௨௥௥ ௣ಽೀ಺೅ೄሺ௣௥௢௣ሻ

 



Normalizing Flow Guided Sampling

 Procedure

○ Learn a normalizing flow to approximate the target distribution

 Normalizing Flow not only gives us the samples, but also the corresponding PDF value

○ Use MCMC correction

 Ratio ൌ ௣ ௣௥௢௣ ௣ಿಷሺ௖௨௥௥ሻ
௣ ௖௨௥௥ ௣ಿಷሺ௣௥௢௣ሻ



Example: Ackley’s function

 Rough Landscape

○ Many local minima around one deep global minimum



NF-guided Sampling

First row shows the truth(MCMC samples) vs the NF-
MCMC-correction
Second row shows the the truth(MCMC samples) vs NF



Dimensionality Analysis 
(NF-guided vs LOITS) Sampling with a better trained NF



Simulation-based Inference

 An Inverse Problem
○ Extract Quantum Correlation Functions (QCFs) from experimental events

 Forward Simulation Model

● sample QCFs to generate events

 Statistical Inference Model

● compare the generated events with the target ones to determine the parameters

 Surrogate Models
○ Approximate the forward sampler

○ Good fidelity of the simulation

○ Provide gradient for parameter inference in gradient-based optimization

○ Fast computation

 Only neural network evaluations



QCF Proxy Model

 Measurable observables
○ 𝝈𝒑𝒐 and 𝝈𝒏𝒐

 Cross-section distributions from proton and neutron targets, respectively.

 Driven by underlying quark distributions 𝒖 𝒙;𝒑 and 𝒅ሺ𝒙;𝒑ሻ, which act as proxies for QCFs.

 Forward model
𝝈𝟏 𝒙;𝒑 ൌ 𝟒𝒖 𝒙;𝒑 ൅ 𝒅 𝒙;𝒑
𝝈𝟐 𝒙;𝒑 ൌ 𝒖 𝒙;𝒑 ൅ 𝟒𝒅 𝒙;𝒑
𝒖 𝒙;𝒑 ൌ 𝑵𝒖𝒙𝒂𝒖ሺ𝟏 െ 𝒙ሻ𝒃𝒖
𝒅 𝒙;𝒑 ൌ 𝑵𝒅𝒙𝒂𝒅ሺ𝟏 െ 𝒙ሻ𝒃𝒅

 Inverse problem
○ Given event-level samples 𝝈𝒑𝒐 and 𝝈𝒏𝒐 , infer QCF parameters

𝑝 ൌ ሼ𝑵𝒖,𝑎𝒖,𝑏𝒖,𝑵𝒅, 𝑎𝒅, 𝑏𝒅ሽ



Computational Experiments

 1D QCF Proxy Model

○ We can use 1D inverse CDF as the truth

 1D inverse CDF

○ “Perfect” sampling

○ Need to evaluate PDF for every sample

 Generative AI-based Surrogates

○ Conditional GAN

○ Conditional Diffusion Model (DM)

○ Both trained on 20M parameter-event pairs



Conditional GAN as the Surrogate

• Generator
– Residual blocks

• 5 dense layers
• 512 neurons each

• Discriminator
– Similar architecture with 5% 

dropout

• Loss
– Least Squares



Diffusion Model as the Surrogate

• Denoising Network
– 6 MLP blocks (256 hidden units)
– FiLM (Feature-wise Linear Modulation) 

conditioning

• Noise schedule
– T = 1,000 steps
– βmin = 10−4

– βmax = 0.02

• Training
– MSE loss between predicted and true noise



Fidelity Comparison of Generative AI Models

Diffusion Model yields better fidelity compared to GAN.



Comparison of Computational Time



QCF Parameter Inference

Parameter distributions obtained using an inverse-
CDF sampler

Parameter distributions obtained using the 
surrogate sampler



Reconstructed QCFs

Inverse CDF Generative AI-based Surrogate



Reconstructed Cross-sections

Reconstructed cross sections from 
parameters using an inverse-CDF sampler

Reconstructed cross sections from parameters 
using a Surrogate

𝝈𝟏

𝝈𝟐



Training Samples for 
Surrogate Model

Comparison of parameter 
distributions for six parameters 
across datasets of different sizes 
using the inverse CDF, surrogate, 
and ground truth values. Error 
bars indicate the standard 
deviation of the predicted 
parameters.



Comparison
 Differentiable Samplers

○ Pros

 Accurate

 No pre-defined range of 
parameters

 No training needed

○ Cons

 Computational Costly

 Difficulty in implementation to 
ensure differentiability

 Generative AI-based Surrogates

○ Pros

 Fast (neural network evaluation)

 Differentiable

 Easy to incorporate into inference 
framework

○ Cons

 Approximation error

 Need to train with a lot of samples

 Pre-defined range of parameters



Training Range Problem
 DM model trained on parameters sampled in parameter ranges (shaped)

 Applied to test events generated by parameters within range



Active Learning to Address the Training Range Problem
 Pre-trained DM model on events generated by 

out-of-range 
 After a few steps of adaptive learning

Preliminary Results (Unpublished)



Summary

● Inverse Problem
○ Ill-posedness

○ Generative AI is natural to solving inverse problem

■ Generate multiple solutions

■ Diffusion Model yields better fidelity than GAN and Variational Autoencoder 

○ Training Range

● Challenges
○ Stability

○ Robustness

○ Uncertainty Quantification

○ Programming physics into the deep learning framework

○ Extracting physics from inverse inferencing
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● Prediction of CFFs as a function of the Mandelstam variable t for Jlab
6GeV Kinematics
○ XBj = 0.35

○ Q2 = 1.9 GeV2

Prediction of CFFs w.r.t. t

All 8 CFFs Fixing 𝑅𝑒𝐻෩ ൌ 0, 𝑅𝑒𝐸෨ ൌ 0


