

Jefferson Lab Thomas Jefferson National Accelerator Facility

Attività di Roma Tor Vergata

Annalisa D'Angelo Carlo Schaerf, Irene Zonta

Thomas Jefferson National Accelerator Facility
Università di Roma Tor Vergata and INFN Roma Tor Vergata

JLab - Roma 16 Aprile 2012

Outline

6 Gev - run g14: preparazione, run, calibrazione ed analisi dati

- Contributo alla realizzazione dell'IBC presso il Jlab.

Magneti e strumentazione

- Criostato magnetico Janis PD2 per condensazione di gas di HD e per misure di NMR. Presso il Jlab.
- Risultati delle misure sistematiche di concentrazione relativa di orto- H_2 e para- D_2 in gas di HD tramite diffusione Raman.

Diagnosi relativa ai tempi di polarizzazione. -> misure in 1 sett.

- Calibrazione dei tempi di volo dell'EC → Irene Zonta
- Analisi di canali di fotoproduzione sul neutrone polarizzato (π^0 n, η n, ω n) con neutrone nello stato finale, rivelato dell'EC.

12 GeV - attività future.

Bobina a sella di cavallo per il campo magnetico trasverso

isa C

Considerando 54 avvolgimenti ed una corrente di I=60 A si ottiene un campo magnetico trasverso di ~ 0.1 T con una uniformità sul bersaglio migliore del 5%.

Bobina a sella di cavallo per il campo magnetico trasverso

Ciascuna delle due metà è costituita da:

• 54 avvolgimenti di filo Cu:SC 1.5:1 54643 superconduttore di 254μm di diametro della Supercon Inc..

Mappe del campo I=60 A, R=7 cm.

Campo verticale

- calcolato
- ▲ misurato

16 Aprile 2012 Annalisa D'Angelo 5

Bobina a sella di cavallo per il campo magnetico trasverso

Conclusioni:

- La bobina è funzionante secondo le specifiche: 600 Gauss.
- E' stata utilizzata con successo durante il run per ruotare la polarizzazione del deuterio. (Ha consentito di mantenere l'8% di polarizzazione durante lo spegnimento del solenoide principale).
- Sarà oggetto di pubblicazione
- Ci è stato richiesto di realizzarne una più grande per Clas12.

Criostato di produzione o PD2

Il bersaglio di HD viene condensato nel PD.

Nello stesso criostato viene effettuata la calibrazione nell'NMR.

A seguito di un danno permanente al magnete, il criostato INFN ha sostituto quello proveniente da BNL.

La restituzione è prevista dopo la fine della presa dati.

Processo di polarizzazione

Il bersaglio viene poi inserito nel refrigeratore a diluizione (DF), tramite un criostato di trasferimento TC, dove rimane per almeno tre mesi alla temperatura di 23 mK e con un campo magnetico di 15 T.

Il processo più delicato è costituito dal trasferimento del bersaglio da un criostato all'altro, mantenendo una temperatura di 2.8 K ed un campo magnetico di 0.5 T

Il bersaglio in Hall-B: IBC

Polarizzazione del bersaglio: fino al 75% H ed il 40% D

Tempi di rilassamento: > 1 anno

La purezza del gas determina:

 \checkmark Il tempo di rilassamento longitudinale T_1 sia per l'idrogeno che per il deuterio

Tempo di rilassamento longitudinale T_1^H

$$\frac{1}{T_1^H} \propto (c_1^H)^{-2.1} (c_1^D)^{-1.6}$$

La purezza del gas determina:

✓ Il tempo di rilassamento longitudinale T₁ sia per l'idrogeno che per il deuterio

Tempo di rilassamento longitudinale T₁D

$$\frac{1}{T_1^H} \propto \left(c_1^H\right)^{2.1} \left(c_1^D\right)^{1.6}$$

Aging (days)

Annalisa D'Angelo

La purezza del gas determina:

- \checkmark Il tempo di rilassamento longitudinale T_1 sia per l'idrogeno che per il deuterio
- ✓ Il tempo di invecchiamento

3 mesi se la concentrazione iniziale di para-D2 è 10-4

La purezza del gas determina:

- \checkmark Il tempo di rilassamento longitudinale T_1 sia per l'idrogeno che per il deuterio
- ✓ Il tempo di invecchiamento
- ✓ Il ciclo di polarizzazione

La purezza del gas determina:

- \checkmark Il tempo di rilassamento longitudinale T_1 sia per l'idrogeno che per il deuterio
- ✓ Il tempo di invecchiamento
- ✓ Il ciclo di polarizzazione
- ✓ La quantità di calore generata dalla conversione dell'o-H2 e del p-D2

Alcuni µWatt a 20 mK

La purezza del gas determina:

- \checkmark Il tempo di rilassamento longitudinale T_1 sia per l'idrogeno che per il deuterio
- ✓ Il tempo di invecchiamento
- ✓ Il ciclo di polarizzazione
- ✓ La quantità di calore generata dalla conversione dell'o-H2 e del p-D2

Il valore finale del grado di polarizzazione del campione di HD dipende dal grado di purezza del gas iniziale e dalla procedura di polarizzazione.

Campione di gas JMU-III

E' necessaria una sensibilità di 10⁻⁵ per determinare contaminazioni di 10⁻⁴.

Ion-Ar Laser:

15 W power

Annalisa D'Angelo

800

600

 $v(cm^{-1})$

16 ¹⁰

1000

200

400

Gas di HD disponibile

Gas	Quality	Quantity	Targets
sample			
JMU-II	Double-distilled	1.05 moles	2
JMU-III	Double-distille d	1.14 moles	2
USC	Double-distille d	1.00 moles	2

Un bersaglio richiede 0.41 moli → si possono condensare 6 bersagli utilizzando il gas distillato due volte.

Analisi della intensità delle righe Raman e confronto con i risultati dalla GC

Sono stati analizzati 3 diversi campioni di gas inviati dal Jlab. I risultati RAMAN sono stati ottenuti combinando tra loro quattro diverse tecniche di analisi dati. Con una sola eccezione i risultati sono in acordo con i risultati dell'analisi di GC ottenuti a JMU.

H2/HD	JMU-II	JMU-III	USC
Raman	0.00472 ± 0.00004	0.00220 ± 0.00004	0.00387 ± 0.00004
GC	0.0049 ± 0.0002	0.0022 ± 0.0002	0.0034 ± 0.0007

D2/HD	JMU-II	JMU-III	USC
Raman	0.00416±0.00008	0.0025 ± 0.0001	0.00442 ± 0.00008
GC	0.0014 ± 0.0002	0.0013 ± 0.0007	0.0033 ± 0.0032

Il Pre-aging del gas alla temperature dell' LHe per 21 giorni riduce la concentrazione di orto- H_2 di un fattore 0.04 e quella di para- D_2 di un fattore 0.33.

Sequenza dell'utilizzo del gas per i bersagli g14

Feb 2011

Sono stato utilizzati i campioni JMUIII ed USC per la condensazione di tre bersagli da utilizzarsi per l'inizio di 914.

Nov 2011

Un bersaglio è stato utilizzato per le prove di trasferimento di polarizzazione da H a D

Un bersaglio è stato utilizzato come test per il commissioning dell'esperimento

1 Dic 2011

Un bersaglio "silver target" è stato inserito con successo nell'IBC.

Pol. D: 23%

7 Dic 2011

Sono stati condensati 3 bersagli per l'inizio del ciclo di polarizzazione (JMUII e USC)

16 Dic 2011

La polarizzazione del deuterio è ridotta all'8% dopo la rotazione della polarizzazione del D. L'alimentatore del solenoide ha avuto un problema.

Sequenza dell'utilizzo del gas per i bersagli g14

Feb 2012

I Test con il fascio di elettroni.

13 Marzo 2012

Un bersaglio è stato trasferito all'IBC ed è arrivato depolarizzato. Cause: 1. Trasferimento inefficiente

2. Tempo di rilassamento longitudinale troppo breve (non in frozen-spin mode) Richiesta urgente di analisi Raman del gas utilizzato

First Results on Raman analysis of USC and JMU2 gas samples March 26th 2012

USC	Background	Ortho-H2 /HD	Para-H2 /HD	H2 /HD	Para-D2 /HD	Ortho-D2 /HI	D2 /HD
CSC	Subtraction						
	Method	2	. 2	. 2	2	. 2	2
Meas.1	fit	$(5.88\pm0.10)10^{-3}$	$(2.09\pm0.09)10^{-3}$	$(7.97\pm0.19)10^{-3}$	$(0.99\pm0.14)10^{-3}$	$(3.14\pm0.14)10^{-3}$	$(4.13\pm0.28)10^{-3}$
Meas.1	subtr.	$(5.87\pm0.13)10^{-3}$	$(2.09\pm0.09)10^{-3}$	$(7.96\pm0.21)10^{-3}$	$(0.99\pm0.15)10^{-3}$	$(3.17\pm0.17)10^{-3}$	$(4.16\pm0.32)10^{-3}$
Meas.2	fit	$(5.75\pm0.14)10^{-3}$	$(2.03\pm0.12)10^{-3}$	$(7.78\pm0.26)10^{-3}$	$(0.92\pm0.17)10^{-3}$	$(3.08\pm0.18)10^{-3}$	$(4.00\pm0.35)10^{-3}$
Meas.2	subtr.	$(5.65\pm0.15)10^{-3}$	$(2.01\pm0.13)10^{-3}$	(7.66±0.26)10 ⁻³	(0.91±0.17)10 ⁻³	$(3.05\pm0.20)10^{-3}$	$(3.96\pm0.37)10^{-3}$

H2 is almost at thermal equilibrium D2 is not

JMU2	Background Subtraction Method	Ortho-H2 /HD	Para-H2 /HD	H2 /HD	Para-D2 /HD	Ortho-D2 /HI	D2 /HD
Meas.1	fit	$(4.02\pm0.14)10^{-3}$	$(3.47\pm0.14)10^{-3}$	$(7.49\pm0.28)10^{-3}$	$(0.97\pm0.18)10^{-3}$	$(4.27\pm0.21)10^{-3}$	$(5.24\pm0.39)10^{-3}$
Meas.1	subtr.	$(3.92\pm0.17)10^{-3}$	$(3.40\pm0.16)10^{-3}$	$(7.32\pm0.35)10^{-3}$	$(0.95\pm0.19)10^{-3}$	$(4.21\pm0.26)10^{-3}$	$(5.16\pm0.45)10^{-3}$

Neither H2 nor D2 are at thermal equilibrium

Le popolazioni ortho-e parasi comportano come due specie distinte di gas e si dispongono su pendenze distinte.

Nuove misure. Comportamento mai osservato prima.

Pubblicazione dei risultati

Sequenza dell'utilizzo del gas per i bersagli g14

Feb 2012

I Test con il fascio di elettroni.

13 Marzo 2012

Un bersaglio è stato trasferito all'IBC ed è arrivato depolarizzato. Cause: 1. Trasferimento inefficiente

- 2. Tempo di rilassamento longitudinale troppo breve (non in frozen-spin mode) Richiesta urgente di analisi Raman del gas utilizzato
 - ✓ Il contenuto di H2 è doppio del previsto → T1 più lunghi
 - ✓ Il gas non torna all'equilibrio termico con la stessa costante di tempo con cui la fase ortho- decade in para-

Ulteriori misure per la determinazione dei tempi di raggiungimento dell'equilibrio termico

Sequenza dell'utilizzo del gas per i bersagli g14

Feb 2012

I Test con il fascio di elettroni.

13 Marzo 2012

Un bersaglio è stato trasferito all'IBC ed è arrivato depolarizzato. Cause:

- 1. Trasferimento inefficiente
- 2. Tempo di rilassamento longitudinale troppo breve (non in frozen-spin mode)

28 Marzo 2112

II Test con il fascio di elettroni. → polarizzazione del D molto più fragile dell'H.

5 Aprile 2012

Un secondo bersaglio è stato trasferito all'IBC: pol D 30%. (Aging sufficiente e trasferimento più accurato - nuovo cold tool).

Calibrazione ed analisi dati

Sono state acquistate 4 nuove macchine (2 server e 2 workstation) Per l'analisi dati di g14.

- 1. Calibrazione
- 2. Monte Carlo
- 3. Analisi dei canali con neutrone nello stato finale

Programmi futuri

-Conclusione presa dati Maggio 2012.

-Il bersaglio di HD sarà utilizzato per Clas 12?

-Ottimizzazione della tecnica di misura NMR

da "field sweep" a "frequency sweep"

- Collaborazione con il gruppo di Genova per la realizzazione e la messa a punto del FT.

Backup slides

HD distillery operation

Raman lines intensity analysis

Temperature and concentration dependence

$$I(J,T) = I_0 A(v) v^3 f(J) \gamma^2 \frac{45\pi^4}{7} \frac{N}{Q(T)} g_s(J) (2J+1) \frac{3(J+1)(J+2)}{2(2J+1)(2J+3)} \exp\left(-\frac{hcb_0 J(J+1)}{KT}\right)$$

Constant C

 I_0 = Laser Intensity

A(v) = spectral response function

f(J) = an-harmonicity correction

= anisotropic matrix element

N = total number of molecules

$$Q(T) = \sum_{J} g_s(J)(2J+1) \exp\left(-\frac{hcb_0J(J+1)}{KT}\right)$$
 Partition function

 $g_s(J)$ = nuclear spin multiplicity

$$I(J,T) = C \frac{N}{Q(T)} h(J) \exp\left(-\frac{hcb_0 J(J+1)}{KT}\right) \qquad h(J) = g_s(J)(2J+1) \frac{3(J+1)(J+2)}{2(2J+1)(2J+3)}$$

CN and T may be extracted from a fit to data

Raman lines intensity analysis Results obtained by combining four different analysis techniques

H2/HD	JMU-II 1	JMU-II 2	JMU-III	USC
G+back	0.00479±0.00007	0.00447 ± 0.00007	0.00227 ± 0.00007	0.00395 ± 0.00007
Peaks Ratio				
G+back	0.00471 ± 0.00007	0.00441±0.00007	0.00220 ± 0.00007	0.00381±0.00007
Global Fit				
Int+back	0.005 ± 0.001	0.00448±0.00009	0.0022 ± 0.0007	0.00397 ± 0.00009
sub				
Peaks Ratio				
Int+back	0.00465 ± 0.00007	0.00434±0.00008	0.00217 ± 0.00007	0.00376 ± 0.00008
sub				
Global Fit				
Weighted	0.00472 ± 0.00004	0.00442±0.00004	0.00220 ± 0.00004	0.00387 ± 0.00004
mean				
•		·		
D2/HD	JMU-II 1	JMU-II 2	JMU-III	USC
D2/HD				
G+back	JMU-II 1 0.0040±0.0001	JMU-II 2 0.0042±0.0001	JMU-III 0.0025±0.0001	USC 0.0042±0.0001
G+back Peaks Ratio	0.0040±0.0001	0.0042±0.0001	0.0025±0.0001	0.0042±0.0001
G+back Peaks Ratio G+back				
G+back Peaks Ratio G+back Global Fit	0.0040±0.0001 0.0043±0.0001	0.0042±0.0001 0.0045±0.0001	0.0025±0.0001	0.0042±0.0001 0.0046±0.0002
G+back Peaks Ratio G+back Global Fit Int+back	0.0040±0.0001	0.0042±0.0001	0.0025±0.0001	0.0042±0.0001
G+back Peaks Ratio G+back Global Fit Int+back sub	0.0040±0.0001 0.0043±0.0001	0.0042±0.0001 0.0045±0.0001	0.0025±0.0001	0.0042±0.0001 0.0046±0.0002
G+back Peaks Ratio G+back Global Fit Int+back sub Peaks Ratio	0.0040±0.0001 0.0043±0.0001 0.004±0.002	0.0042±0.0001 0.0045±0.0001 0.0042±0.0001	0.0025±0.0001 0.0025±0.0002	0.0042±0.0001 0.0046±0.0002 0.0043±0.0002
G+back Peaks Ratio G+back Global Fit Int+back sub Peaks Ratio Int+back	0.0040±0.0001 0.0043±0.0001	0.0042±0.0001 0.0045±0.0001	0.0025±0.0001	0.0042±0.0001 0.0046±0.0002
G+back Peaks Ratio G+back Global Fit Int+back sub Peaks Ratio Int+back sub	0.0040±0.0001 0.0043±0.0001 0.004±0.002	0.0042±0.0001 0.0045±0.0001 0.0042±0.0001	0.0025±0.0001 0.0025±0.0002	0.0042±0.0001 0.0046±0.0002 0.0043±0.0002
G+back Peaks Ratio G+back Global Fit Int+back sub Peaks Ratio Int+back sub Global Fit	0.0040±0.0001 0.0043±0.0001 0.004±0.002 0.0042±0.0002	0.0042±0.0001 0.0045±0.0001 0.0042±0.0001 0.0044±0.0001	0.0025±0.0001 0.0025±0.0002 - 0.0025±0.0002	0.0042±0.0001 0.0046±0.0002 0.0043±0.0002 0.0046±0.0002
G+back Peaks Ratio G+back Global Fit Int+back sub Peaks Ratio Int+back sub	0.0040±0.0001 0.0043±0.0001 0.004±0.002	0.0042±0.0001 0.0045±0.0001 0.0042±0.0001 0.0044±0.0001	0.0025±0.0001 0.0025±0.0002	0.0042±0.0001 0.0046±0.0002 0.0043±0.0002

Distillazione dell'HD

HD commerciale contiene ~ 98% HD ~1.5% H₂ ≤0.5% D₂

Processo di distillazione: By Steve Whinsnant @ JMU

Annalisa D'Angelo

Distillazione dell'HD

L' HD commerciale contiene ~ 98% HD ~1.5% H₂ ≤0.5% D₂

Ogni ciclo di distillazione riduce la concentrazione di H_2 e D_2 di un ordine di grandezza.

Sono necessari due cicli di distillazione per ridurre la concentrazione iniziale dei contaminanti di due ordini di grandezza, per ottenere la concentrazione iniziale ottimale di 10⁻⁴.

Stoccaggio: problema della ricombinazione dell'HD

Il gas di HD conservato ad alta pressione (200 psi) in contenitori di acciaio tende a dissociarsi ed a ricombinarsi nelle specie H_2 and D_2 al tasso di 0.14% /month.

Mmisure accurate delle concentrazioni di ortho- H_2 and para- D_2 nell'HD sono altamente desiderabili.

16 Aprile 2012 Annalisa D'Angelo 33

Analisi del gas di HD: Gas Cromatografia

Si musura la differenza della conducibilità termica rispetto ad un gas trasportatore costituito da Neon, in funzione del tempo di ritenzione in un condotto capillare.

Varian CP-3800 GC

I tempo di ritenzione nel condotto è funzione della massa molecolare e delle spin del gas analizzato.

Il limite della risoluzione della gascromatografia è $\sim 0.05\%$

Retention time (min)

Mappe del campo I=60 A, R=7 cm.

Campo radiale

- calcolato
- ▲ misurato

16 Aprile 2012 Annalisa D'Angelo 35

Mappe del campo I=60 A, R=7 cm.

Campo orizzontale

- calcolato
- ▲ misurato

16 Aprile 2012 Annalisa D'Angelo 36

Analisi del gas di HD: spettroscopia Raman

diffusione Laser dagli stati rotazionali

$$E_R = \hbar^2 \frac{J^2}{2I} = hcb_0 J(J+1) \qquad b_0 = \frac{h}{8\pi^2 I}$$

$$\Delta E = hcb_0 (J+2)(J+3) - hcb_0 J(J+1) = hcb_0 (4J+6)$$

