

Attività di Roma Tor Vergata.

Annalisa D'Angelo Carlo Schaerf, Irene Zonta

Thomas Jefferson National Accelerator Facility Università di Roma Tor Vergata and INFN Roma Tor Vergata

JLab - Roma 16 Aprile 2012

Outline

6 Gev - run g14: preparazione, run, calibrazione ed analisi dati

- Contributo alla realizzazione dell'IBC presso il Jlab.

Magneti e strumentazione

- Criostato magnetico Janis PD2 per condensazione di gas di HD e per misure di NMR. Presso il Jlab.

- Risultati delle misure sistematiche di concentrazione relativa di orto- H_2

e para- D_2 in gas di HD tramite diffusione Raman.

Diagnosi relativa ai tempi di polarizzazione. -> misure in 1 sett.

- Calibrazione dei tempi di volo dell'EC \rightarrow Irene Zonta
- Analisi di canali di fotoproduzione sul neutrone polarizzato (π^0 n, η n, ω n) con neutrone nello stato finale, rivelato dell'EC.
- 12 GeV attività future.

16 Aprile 2012

Bobina a sella di cavallo per il campo magnetico trasverso

Considerando 54 avvolgimenti ed una corrente di I=60 A si ottiene un campo magnetico trasverso di ~ 0.1 T con una uniformità sul bersaglio migliore del 5%.

Bobina a sella di cavallo per il campo magnetico trasverso

Mappe del campo I=60 A, R=7 cm.

Campo verticale

the street was

calcolato

Bobina a sella di cavallo per il campo magnetico trasverso

Conclusioni:

- La bobina è funzionante secondo le specifiche: 600 Gauss.
- E' stata utilizzata con successo durante il run per ruotare la polarizzazione del deuterio. (Ha consentito di mantenere l'8% di polarizzazione durante lo spegnimento del solenoide principale).
- Sarà oggetto di pubblicazione
- Ci è stato richiesto di realizzarne una più grande per Clas12.

Criostato di produzione o PD2

Il bersaglio di HD viene condensato nel PD.

Nello stesso criostato viene effettuata la calibrazione nell'NMR.

A seguito di un danno permanente al magnete, il criostato INFN ha sostituto quello proveniente da BNL.

La restituzione è prevista dopo la fine della presa dati.

16 Aprile 2012

Processo di polarizzazione

Il bersaglio viene poi inserito nel refrigeratore a diluizione (DF), tramite un criostato di trasferimento TC, dove rimane per almeno tre mesi alla temperatura di 23 mK e con un campo magnetico di 15 T.

Il processo più delicato è costituito dal trasferimento del bersaglio da un criostato all'altro, mantenendo una temperatura di 2.8 K ed un campo magnetico di 0.5 T

16 Aprile 2012

Il bersaglio in Hall-B: IBC

Polarizzazione del bersaglio: fino al 75% H ed il 40% D Tempi di rilassamento: > 1 anno

16 Aprile 2012

La purezza del gas determina:

 \checkmark Il tempo di rilassamento longitudinale T₁ sia per l'idrogeno che per il deuterio

Tempo di rilassamento longitudinale T₁^H

$$\frac{1}{T_1^H} \propto (c_1^H)^{-2.1} (c_1^D)^{-1.6}$$

16 Aprile 2012

La purezza del gas determina:

 \checkmark Il tempo di rilassamento longitudinale T₁ sia per l'idrogeno che per il deuterio

La purezza del gas determina:

- \checkmark Il tempo di rilassamento longitudinale T₁ sia per l'idrogeno che per il deuterio
- ✓ Il tempo di invecchiamento

3 mesi se la concentrazione iniziale di para-D2 è 10-4

La purezza del gas determina:

- \checkmark Il tempo di rilassamento longitudinale T₁ sia per l'idrogeno che per il deuterio
- ✓ Il tempo di invecchiamento
- ✓ Il ciclo di polarizzazione

La purezza del gas determina:

- \checkmark Il tempo di rilassamento longitudinale T₁ sia per l'idrogeno che per il deuterio
- ✓ Il tempo di invecchiamento
- ✓ Il ciclo di polarizzazione
- ✓ La quantità di calore generata dalla conversione dell'o-H2 e del p-D2

Alcuni μ Watt a 20 mK

La purezza del gas determina:

- \checkmark Il tempo di rilassamento longitudinale T₁ sia per l'idrogeno che per il deuterio
- ✓ Il tempo di invecchiamento
- ✓ Il ciclo di polarizzazione
- ✓ La quantità di calore generata dalla conversione dell'o-H2 e del p-D2

Il valore finale del grado di polarizzazione del campione di HD dipende dal grado di purezza del gas iniziale e dalla procedura di polarizzazione.

16 Aprile 2012

Gas di HD disponibile

Gas	Quality	Quantity	Targets
sample			
JMU-II	Double-distilled	1.05 moles	2
JMU-III	Double-distille d	1.14 moles	2
USC	Double-distille d	1.00 moles	2

Un bersaglio richiede 0.41 moli → si possono condensare 6 bersagli utilizzando il gas distillato due volte.

Analisi della intensità delle righe Raman e confronto con i risultati dalla GC

Sono stati analizzati 3 diversi campioni di gas inviati dal Jlab. I risultati RAMAN sono stati ottenuti combinando tra loro quattro diverse tecniche di analisi dati. Con una sola eccezione i risultati sono in acordo con i risultati dell'analisi di GC ottenuti a JMU.

H2/HD	JMU-II	JMU-III	USC
Raman	0.00472 ± 0.00004	0.00220 ± 0.00004	0.00387 ± 0.00004
GC	0.0049 ± 0.0002	0.0022 ± 0.0002	0.0034 ± 0.0007

D2/HD	JMU-II	JMU-III	USC
Raman	0.00416±0.00008	0.0025 ± 0.0001	0.00442 ± 0.00008
GC	0.0014 ± 0.0002	0.0013 ± 0.0007	0.0033 ± 0.0032

Il Pre-aging del gas alla temperature dell' LHe per 21 giorni riduce la concentrazione di orto- H_2 di un fattore 0.04 e quella di para- D_2 di un fattore 0.33.

Sequenza dell'utilizzo del gas per i bersagli g14

Feb 2011

Sono stato utilizzati i campioni JMUIII ed USC per la condensazione di tre bersagli da utilizzarsi per l'inizio di g14.

Nov 2011

Un bersaglio è stato utilizzato per le prove di trasferimento di polarizzazione da H a D

Un bersaglio è stato utilizzato come test per il commissioning dell'esperimento

1 Dic 2011

Un bersaglio "silver target" è stato inserito con successo nell'IBC.

Pol. D: 23%

7 Dic 2011

Sono stati condensati 3 bersagli per l'inizio del ciclo di polarizzazione (JMUII e USC)

16 Dic 2011

La polarizzazione del deuterio è ridotta all'8% dopo la rotazione della polarizzazione del D. L'alimentatore del solenoide ha avuto un problema.

Sequenza dell'utilizzo del gas per i bersagli g14

Feb 2012

I Test con il fascio di elettroni.

13 Marzo 2012

Un bersaglio è stato trasferito all'IBC ed è arrivato depolarizzato. Cause: 1.Trasferimento inefficiente

2. Tempo di rilassamento longitudinale troppo breve (non in frozen-spin mode) Richiesta urgente di analisi Raman del gas utilizzato

First Results on Raman analysis of USC and JMU2 gas samples March 26th 2012

USC	Background	Ortho-H2 /HD	Para-H2 /HD	H2 /HD	Para-D2 /HD	Ortho-D2 /HI	D2 /HD
OBC	Subtraction						
	Method						
Meas.1	fit	$(5.88\pm0.10)10^{-3}$	$(2.09\pm0.09)10^{-3}$	$(7.97 \pm 0.19)10^{-3}$	$(0.99 \pm 0.14)10^{-3}$	$(3.14\pm0.14)10^{-3}$	$(4.13\pm0.28)10^{-3}$
Meas.1	subtr.	$(5.87\pm0.13)10^{-3}$	$(2.09\pm0.09)10^{-3}$	$(7.96 \pm 0.21)10^{-3}$	$(0.99 \pm 0.15) 10^{-3}$	$(3.17\pm0.17)10^{-3}$	$(4.16\pm0.32)10^{-3}$
Meas.2	fit	$(5.75\pm0.14)10^{-3}$	$(2.03\pm0.12)10^{-3}$	$(7.78\pm0.26)10^{-3}$	$(0.92\pm0.17)10^{-3}$	$(3.08\pm0.18)10^{-3}$	$(4.00\pm0.35)10^{-3}$
Meas.2	subtr.	$(5.65\pm0.15)10^{-3}$	(2.01±0.13)10 ⁻³	$(7.66\pm0.26)10^{-3}$	$(0.91\pm0.17)10^{-3}$	$(3.05\pm0.20)10^{-3}$	$(3.96\pm0.37)10^{-3}$

H2 is almost at thermal equilibrium D2 is not

JMU2	Background	Ortho-H2 /HD	Para-H2 /HD	H2 /HD	Para-D2 /HD	Ortho-D2 /HI	D2 /HD
	Method						
Meas.1	fit	$(4.02\pm0.14)10^{-3}$	$(3.47\pm0.14)10^{-3}$	$(7.49\pm0.28)10^{-3}$	$(0.97\pm0.18)10^{-3}$	$(4.27\pm0.21)10^{-3}$	(5.24±0.39)10 ⁻³
Meas.1	subtr.	$(3.92\pm0.17)10^{-3}$	$(3.40\pm0.16)10^{-3}$	$(7.32\pm0.35)10^{-3}$	$(0.95\pm0.19)10^{-3}$	$(4.21\pm0.26)10^{-3}$	$(5.16\pm0.45)10^{-3}$

Neither H2 nor D2 are at thermal equilibrium

16 Aprile 2012

16 Aprile 2012

Sequenza dell'utilizzo del gas per i bersagli g14

Feb 2012 I Test con il fascio di elettroni.

13 Marzo 2012

Un bersaglio è stato trasferito all'IBC ed è arrivato depolarizzato. Cause: 1.Trasferimento inefficiente 2.Tempo di rilassamento longitudinale troppo breve (non in frozen-spin mode

2.Tempo di rilassamento longitudinale troppo breve (non in frozen-spin mode) Richiesta urgente di analisi Raman del gas utilizzato

✓ Il contenuto di H_2 è doppio del previsto → T1 più lunghi

✓ Il gas non torna all'equilibrio termico con la stessa costante di tempo con cui la fase ortho- decade in para-

Ulteriori misure per la determinazione dei tempi di raggiungimento dell'equilibrio termico

Sequenza dell'utilizzo del gas per i bersagli g14

Feb 2012 I Test con il fascio di elettroni.

13 Marzo 2012

Un bersaglio è stato trasferito all'IBC ed è arrivato depolarizzato. Cause: 1.Trasferimento inefficiente 2.Tempo di rilassamento longitudinale troppo breve (non in frozen-spin mode)

28 Marzo 2112 II Test con il fascio di elettroni. → polarizzazione del D molto più fragile dell'H.

5 Aprile 2012 Un secondo bersaglio è stato trasferito all'IBC: pol D 30%. (Aging sufficiente e trasferimento più accurato - nuovo cold tool).

Calibrazione ed analisi dati

Sono state acquistate 4 nuove macchine (2 server e 2 workstation) Per l'analisi dati di g14.

- 1. Calibrazione
- 2. Monte Carlo
- 3. Analisi dei canali con neutrone nello stato finale

Programmi futuri

-Conclusione presa dati Maggio 2012.

-Il bersaglio di HD sarà utilizzato per Clas 12?

-Ottimizzazione della tecnica di misura NMR

da "field sweep" a "frequency sweep"

- Collaborazione con il gruppo di Genova per la realizzazione e la messa a punto del FT.

Backup slides

Raman lines intensity analysis

Temperature and concentration dependence

$$I(J,T) = I_0 A(v) v^3 f(J) \gamma^2 \frac{45\pi^4}{7} \frac{N}{Q(T)} g_s(J) (2J+1) \frac{3(J+1)(J+2)}{2(2J+1)(2J+3)} \exp\left(-\frac{hcb_0 J(J+1)}{KT}\right)$$

Constant C

 $\begin{array}{ll} I_0 & = \text{Laser Intensity} \\ A(v) & = \text{spectral response function} \\ f(J) & = \text{an-harmonicity correction} \\ \gamma & = \text{anisotropic matrix element} \end{array}$

N = total number of molecules

$$Q(T) = \sum_{J} g_s(J)(2J+1) \exp\left(-\frac{hcb_0 J(J+1)}{KT}\right)$$
 Partition function

 $g_s(J) =$ nuclear spin multiplicity

$$I(J,T) = C \frac{N}{Q(T)} h(J) \exp\left(-\frac{hcb_0 J(J+1)}{KT}\right) \qquad h(J) = g_s(J)(2J+1) \frac{3(J+1)(J+2)}{2(2J+1)(2J+3)}$$

CN and T may be extracted from a fit to data

16 Aprile 2012

Results obtained by combining four different analysis techniques

H2/HD	JMU-II 1	JMU-II 2	JMU-III	USC
G+back	0.00479 ± 0.00007	0.00447 ± 0.00007	0.00227 ± 0.00007	0.00395 ± 0.00007
Peaks Ratio				
G+back	0.00471±0.00007	0.00441 ± 0.00007	0.00220±0.00007	0.00381 ± 0.00007
Global Fit				
Int+back	0.005 ± 0.001	0.00448 ± 0.00009	0.0022 ± 0.0007	0.00397 ± 0.00009
sub				
Peaks Ratio				
Int+back	0.00465 ± 0.00007	0.00434 ± 0.00008	0.00217 ± 0.00007	0.00376 ± 0.00008
sub	A CONTRACTOR OF	A CONTRACTOR OF THE REAL		I TOTAL CONTRACTOR
Global Fit				
Weighted	0.00472±0.00004	0.00442 ± 0.00004	0.00220 ± 0.00004	0.00387 ± 0.00004
mean				
			** *** ***	* * C C
D2/HD	JMU-II I	JMU-11 2	JMU-III	USC
D2/HD G+back	JMU-II 1 0.0040±0.0001	JMU-II 2 0.0042±0.0001	JMU-III 0.0025±0.0001	USC 0.0042±0.0001
D2/HD G+back Peaks Ratio	JMU-II I 0.0040±0.0001	JMU-II 2 0.0042±0.0001	JMU-III 0.0025±0.0001	USC 0.0042±0.0001
D2/HD G+back Peaks Ratio G+back	JMU-II I 0.0040±0.0001 0.0043±0.0001	JMU-II 2 0.0042±0.0001 0.0045±0.0001	JMU-III 0.0025±0.0001 0.0025±0.0002	USC 0.0042±0.0001 0.0046±0.0002
D2/HD G+back Peaks Ratio G+back Global Fit	JMU-II I 0.0040±0.0001 0.0043±0.0001	JMU-II 2 0.0042±0.0001 0.0045±0.0001	JMU-III 0.0025±0.0001 0.0025±0.0002	USC 0.0042±0.0001 0.0046±0.0002
D2/HD G+back Peaks Ratio G+back Global Fit Int+back	JMU-II I 0.0040±0.0001 0.0043±0.0001 0.004±0.002	JMU-II 2 0.0042±0.0001 0.0045±0.0001 0.0042±0.0001	JMU-III 0.0025±0.0001 0.0025±0.0002	USC 0.0042±0.0001 0.0046±0.0002 0.0043±0.0002
D2/HD G+back Peaks Ratio G+back Global Fit Int+back sub	JMU-II I 0.0040±0.0001 0.0043±0.0001 0.004±0.002	JMU-II 2 0.0042±0.0001 0.0045±0.0001 0.0042±0.0001	JMU-III 0.0025±0.0001 0.0025±0.0002	USC 0.0042±0.0001 0.0046±0.0002 0.0043±0.0002
D2/HD G+back Peaks Ratio G+back Global Fit Int+back sub Peaks Ratio	JMU-II I 0.0040±0.0001 0.0043±0.0001 0.004±0.002	JMU-II 2 0.0042±0.0001 0.0045±0.0001 0.0042±0.0001	JMU-III 0.0025±0.0001 0.0025±0.0002	USC 0.0042±0.0001 0.0046±0.0002 0.0043±0.0002
D2/HD G+back Peaks Ratio G+back Global Fit Int+back sub Peaks Ratio Int+back	JMU-II I 0.0040±0.0001 0.0043±0.0001 0.004±0.002 0.0042±0.0002	JMU-II 2 0.0042±0.0001 0.0045±0.0001 0.0042±0.0001 0.0044±0.0001	JMU-III 0.0025±0.0001 0.0025±0.0002 - 0.0025±0.0002	USC 0.0042±0.0001 0.0046±0.0002 0.0043±0.0002 0.0046±0.0002
D2/HD G+back Peaks Ratio Ghbal Fit Int+back sub Peaks Ratio Int+back sub	JMU-II I 0.0040±0.0001 0.0043±0.0001 0.004±0.002 0.0042±0.0002	JMU-II 2 0.0042±0.0001 0.0045±0.0001 0.0042±0.0001 0.0044±0.0001	JMU-III 0.0025±0.0001 0.0025±0.0002 - 0.0025±0.0002	USC 0.0042±0.0001 0.0046±0.0002 0.0043±0.0002 0.0046±0.0002
D2/HD G+back Peaks Ratio G+back Global Fit Int+back sub Peaks Ratio Int+back sub Global Fit	JMU-II I 0.0040±0.0001 0.0043±0.0001 0.004±0.002 0.0042±0.0002	JMU-II 2 0.0042±0.0001 0.0045±0.0001 0.0042±0.0001 0.0044±0.0001	JMU-III 0.0025±0.0001 0.0025±0.0002	USC 0.0042±0.0001 0.0046±0.0002 0.0043±0.0002 0.0046±0.0002
D2/HD G+back Peaks Ratio Ghobal Fit Int+back sub Peaks Ratio Int+back sub Global Fit Weighted	JMU-II I 0.0040±0.0001 0.0043±0.0001 0.004±0.002 0.0042±0.0002 0.00416±0.00008	JMU-II 2 0.0042±0.0001 0.0045±0.0001 0.0042±0.0001 0.0044±0.0001 0.00433±0.00007	JMU-III 0.0025±0.0001 0.0025±0.0002 - 0.0025±0.0002 0.0025±0.0001	USC 0.0042±0.0001 0.0046±0.0002 0.0043±0.0002 0.0046±0.0002 0.00442±0.00008

16 Aprile 2012

Distillazione dell'HD

L' HD commerciale contiene ~ 98% HD ~1.5% H₂ ≤0.5% D₂

Ogni ciclo di distillazione riduce la concentrazione di H_2 e D_2 di un ordine di grandezza.

Sono necessari due cicli di distillazione per ridurre la concentrazione iniziale dei contaminanti di due ordini di grandezza, per ottenere la concentrazione iniziale ottimale di 10^{-4.}

16 Aprile 2012

Stoccaggio: problema della ricombinazione dell'HD

Il gas di HD conservato ad alta pressione (200 psi) in contenitori di acciaio tende a dissociarsi ed a ricombinarsi nelle specie H_2 and D_2 al tasso di 0.14% /month.

Mmisure accurate delle concentrazioni di ortho- H_2 and para- D_2 nell'HD sono altamente desiderabili.

Analisi del gas di HD: Gas Cromatografia

Si musura la differenza della conducibilità termica rispetto ad un gas trasportatore costituito da Neon, in funzione del tempo di ritenzione in un condotto capillare.

Varian CP-3800 GC

I tempo di ritenzione nel condotto è funzione della massa molecolare e delle spin del gas analizzato.

Il limite della risoluzione della gascromatografia è ~ 0.05%

Retention time (min)

Mappe del campo I=60 A, R=7 cm.

Campo radiale calcolato misurato

16 Aprile 2012

Mappe del campo I=60 A, R=7 cm.

Campo orizzontale

calcolato

Misurato

16 Aprile 2012

Analisi del gas di HD: spettroscopia Raman diffusione Laser dagli stati rotazionali

16 Aprile 2012

