LNF activity

JLAB12 7th Collaboration Meeting April 16, 2012 - Rome

JLAB12 - LNF group

Ricercatori/Tecnologi: 10.5 FTE

- M. Aghasyan (Ass. Ric.)
- S. Anefalos Pereira (Art. 23)
- E. De Sanctis (Dir.)
- D. Hasch (I Ric.)
- L. Hovsepyan (Assoc.)
- V. Lucherini (Dir.)
- M. Mirazita (Ric.)
- J. de Oliveira Echeimberg (Assoc.)
- S. Pisano (Assoc.)
- E. Polli (I Tecn.)
- P. Rossi (Resp)

Tecnici: 0.8-1.0 FTE

- A. Orlandi
- A. Viticchie'

Ricercatori/Tecnologi: 10 FTE

M. Aghasyan (Art. 23) S. Anefalos Pereira (Ric. Ass.) E. De Sanctis (Dir.) D. Hasch (I Ric.) L. Hovsepyan (Assoc.) V. Lucherini (Dir.) M. Mirazita (Resp.) J. de Oliveira Echeimberg (Assoc.) S. Pisano (Ass. Ric.) E. Polli (I Tecn.) M. Hoek, R. Montgomery , J. Phillips (Glasgow, Assoc.) A. Courtoy (Liege, Assoc.) Tecnici: 2.5 FTE D. Orecchini, A. Orlandi, A. Viticchie', L. Trevisan (Bors. INFN)

<u>OUTLINE</u>

1. Physics program: TMD measurements

- Analysis completed
 - Beam Spin Asymmetry in SIDIS π 0 (M. Aghasyan)
- analysis in progress at 6 GeV
 - semi-inclusive production of two hadrons (S. Anefalos Pereira, S. Pisano)
 - Bessel analysis of SIDIS cross section (M. Aghasyan)
 - semi-inclusive analysis of Λ (M. Mirazita)
- new proposals at 12 GeV
 - two hadron SIDIS production with transverse target
 - pion and kaon SIDIS with transverse target
- 2. Hardware activity
 - RICH

<u>BSA in π0 SIDIS</u>

Paper published in Phys. Lett. B 704, 397 (2011)

M. Aghasyan

 $e p \rightarrow e \pi^0 X$

$$F_{LU}^{\sin\phi_h} = \frac{2M}{Q} \int d^2 \mathbf{p}_T \, d^2 \mathbf{k}_T \, \delta^{(2)} \left(\mathbf{p}_T - \frac{\mathbf{p}_T}{z} - \mathbf{k}_T \right) \\ \times \left\{ \frac{\hat{\mathbf{P}}_T \cdot \mathbf{p}_T}{M} \left[\frac{M_h}{M} h_1^{\perp} \frac{\tilde{E}}{z} + x \, g^{\perp} D_1 \right] \right. \\ \left. - \frac{\hat{\mathbf{P}}_T \cdot \mathbf{k}_T}{M_h} \left[\frac{M_h}{M} f_1 \frac{\tilde{G}^{\perp}}{z} + x e H_1^{\perp} \right] \right\}.$$

Purely higher twist effect (~M/Q) Non zero at CLAS energies

- similar size as for π +
- PT dependence measured
- null asymmetry from Collins models
- may be g_{\perp} non-zero?

Two hadron production

SIDIS in the Target Fragmentation Region

<u>Fracture Functions</u> = Fragmentation + Structure

probability that when a quark **q** is struck in a proton target the hadron **h** is produced

Λ SIDIS production

e1f data set : polarized beam on unpolarized hydrogen

$$\vec{e}p \rightarrow e'\vec{\Lambda}X$$

 $\mathbf{l} \mathbf{p}\pi^{-}$

Longitudinal Spin transfer in TFR

Analysis almost completed

Bessel analysis of the SIDIS cross section

$$A_{XY}^{W}(x, y, z, B) = (2) \frac{\int dP_{h\perp} d\varphi_{S} d\varphi_{h} P_{h\perp} W_{XY}(P_{h\perp}, \varphi_{S}, \varphi_{h}, B) (d\sigma^{+} - d\sigma^{-})}{\int dP_{h\perp} d\varphi_{S} d\varphi_{h} P_{h\perp} W_{UU}(P_{h\perp}, \varphi_{S}, \varphi_{h}, B) (d\sigma^{+} + d\sigma^{-})}$$

B: Fourier conjugate of the transverse momentum → transverse position it's the natural variable in lattice calculations

Test of the procedure with Monte Carlo data

M. Aghasyan

• Double longitudinal spin asymmetry

$$A_{LL}^{W}(x, y, z, B) = \sqrt{1 - \varepsilon^{2}} \underbrace{\frac{\widetilde{g}_{1}(x, z^{2}B^{2})}{\widetilde{f}_{1}(x, z^{2}B^{2})}}_{\text{Fourier transform of PDFs}} \underbrace{\frac{\widetilde{g}_{1}(x, z^{2}B^{2})}{\widetilde{f}_{1}(x, z^{2}B^{2})}}_{\text{os}} \underbrace{\frac{\widetilde{g}_{1}(x, z^{2}B^{2})}{\widetilde$$

To be resubmitted to next PAC

- Studies of Dihadron Electroproduction in DIS with transversely Polarized Hydrogen Target (S. Pereira co-spokesperson, S. Pisano) ⇒ transversity
- 2. Studies of pion and kaon Electroproduction in semi-inclusive DIS with Transversely Polarized Hydrogen and Deuterium Targets (M. Aghasyan co-spokesperson) ⇒ Collins and Sivers effects

LNF plans for next years

Proposal	Physics	Contact	Rating	Days	Group	New equipment	Energy	Group	Target
E12-06-108	Hard exclusive electro-production of π^0,η	P. Stoler	в	80		RICH IC Forward tagger	11	RG-A F. Sabatié	liquid
E12-06-112	Proton's quark dynamics in SIDIS pion production	H. Avakian	А	60					H ₂
E12-06-119	Deeply Virtual Compton Scattering	F. Sabatie	А	80					
E12-09-103	Excitation of nucleon resonances at high Q ²	R. Gothe	B+	40	119				
E11-005	Hadron spectroscopy with forward tagger	M. Battaglieri	A-	119					
PR12-11-103	DVMP of ρ,ω,ϕ	M. Guidal		D					
E12-07-104	Neutron magnetic form factor	G. Gilfoyle	A-	30		Neutron detector RICH IC	11	RG-B K. Hafidi	liquid
PEREIRA	Dihadron DIS production	Avakian		D	90				D ₂ target
MIRAZITA	Study of partonic distributions in SIDIS kaon production	K. Hafidi	A-	56					
E12-09-008	Boer-Mulders asymmetry in K SIDIS w/ H and D targets	M. Contalbrigo	A-	TBA					
11-003	DVCS on neutron target	S. Niccolai	А	90					
E12-06-109	Longitudinal Spin Structure of the Nucleon	S. Kuhn	А	80		Polarized target			NH3
E12-06- 119(b)	DVCS on longitudinally polarized proton target	F. Sabatie	А	120		RICH IC	11	RG-C S. Kuhn	ND3
ROSSI	Spin-Orbit Correl. with Longitudinally polarized target	H. Avakian	A-	103	170				
PEREIRA	Dihadron studies on long, polarized target	H. Avakian		D					
MIRAZITA	Study of partonic distributions using SIDIS K $\ensuremath{production}$	K. Hafidi	A-	110					
ROSSI	Spin-Orbit correlations in K production w/ pol. targets	H. Avakian	B+	103					
E12-06-106	Color transparency in exclusive vector meson production	K. Hafidi	В+	60	60		11	RG-D	Nuclear
E12-06-117	Quark propagation and hadron formation	W. Brooks	A-	60	60		11	RG-E	Nuclear
E12-10-102	Free Neutron structure at large x	S. Bueltman	А	40	40	Radial TPC	11	RG-F	Gas D ₂
PR12-11-109	SIDIS on transverse polarized target	M. Contalbrigo		C2		Transverse target	11	RG-G	HD
TOTAL run time					539			-	

The RICH detector for CLAS12

Identification of kaons with momenta up to 8 GeV/c necessary for the TMD physics → RICH replacing Low Threshold Cerenkov Counter Current design:

- aerogel radiator to match the momentum range
- 1 m gap length
- multi-anode PMT for the light detection
- mirrors to focalize the Cerenkov photons in smaller area
- Main issues to be addressed
- 1. Hamamatsu H8500 MAPMT as single photon detectors
- 2. multiple passage of the photons through the aerogel
- 3. effective K/ π separation with direct and reflected light

Status of the project

- 1. CERN test of a simplified prototype (august 2011)
 - test of H8500 with Cerenkov photons
 - reconstruction of the Cerenkov rings for pions
- 2. Test of the RICH components
 - MA-PMT
 - Aerogel (Ferrara)
 - Electronics and DAQ (con ISS)
- 3. Preparation for the next test of a new prototype
 - electron beam at Frascati BTF (July 2-8, 2012)
 - general test of the setup (electronics, DAQ, etc)
 - hadron beam at CERN (July 23 August 6, 2012)
 - K/ π separation
 - direct vs reflected Cerenkov rings

Hadron beam test at CERN

T9 test beam π ,K beam with P=4-10 GeV/c N(π)/N(K) ~ 60

August 2011

Cerenkov rings

Ring reconstruction through fit of the PMT hits above threshold

- pion rings successfully measured
- K/ π separation not possible
 - no tracking system
 - too short gap (~35 cm)

• stable electronics only up to 8 MAPMTs

Number of Cerenkov photons

red: good hits black: hits for the fitted ring (at least 3) blue: cross talk hits

- between 8 and 12 Cerenkov photons per ring
- used to tune the simulation

- Laser intensity can be adjusted via the remote control and using neutral density filters
- The fiber head can be remotely moved in (x,y) to scan the PMT surface
- Conventional electronics for data acquisition (CAEN V792)
- DAQ rate fixed at 100 Hz

<u>Data analysis</u>

New RICH prototype

Goals of the new hadron beam tests:

- **1.** verify K/ π separation up to the highest relevant momentum
- 2. study the ring reconstruction in the totally reflected or direct+reflected configurations; possibly K/ π separation

Constraints:

- 1. gap length for the direct light 1m
- 2. optimize ring coverage with 28 (+4?) MAPMTs
- 3. mirrors?
- 4. tracking system necessary

Schematic layout

<u>RICH prototype – direct light</u>

Total size: ~ 1.5x1.5x1.5 m³

<u>RICH prototype – reflected light</u>

RICH timeline

ITEM	2012 1 st h	2012 2 nd h	2013 1 st h	2013 2 nd h	2014 1 st h	2014 2 nd h	2015 1 st h	FTE/ year	Institutions
Simulations	X	X						2	ARGONNE+INFN+ UConn
Test components & prototyping	X	Х						4	INFN+CNU+JLAB
TDR	X	X						1.5	INFN
Procurement and test aerogel		X	Х	X	Х	Х		1.5	INFN+JLAB
R&D electronics	X	Х	X					2	INFN+UTFSM
Procurement & test electronics				X	Х	Х		1.5	INFN+JLAB+UTFSM
Slow control			X	X	X	X			?
Procurement & test MA-PMTs		X	Х	X	X	Х	Х	1.5	INFN+GLASGOW+ JLAB
Mechanics+gas system			Х	X	Х	Х		1.5	ARGONNE+INFN+ JLAB
R&D Mirrors	Х	Х	X					1.5	INFN+JLAB
Mirrors				X	X	X		1	JLAB
RICH assembly						х	X	5	ALL

1 RICH sector: Cost

ITEM	COST (K\$)	NOTE
AEROGEL	256	RICH surface = 4.7 m ²
MA-PMT H8500	916	400 MA-PMTs /1 m ² ; ϑ_{max} ~12.5 deg
ELECTRONICS	333	
HV	60	
MIRRORS	280	~7 m ²
MECHANICS	40	
GAS SYSTEM	30	
SLOW CONTROL	70	
TOTAL	1985	

The LNF group has a physics program fully dedicated to the TMD study

- with 6 GeV data, several analysis underway
- for the 12 GeV upgrade, co-spokeperson of experiments that will run in the first 5 years

Hardware activity for the RICH detector

- functionality test of the detector in the summer
- plan to ask for one RICH sector funding from INFN and one sector from DOE

PMT da0168 vs HV

1 p.e. detection

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

2

Fraction of first p.e. loss

HV = 1040 V

HV=1075 V

Cross-talk analysis

ADC Channel 25, Laser on channel 23

- Compare the pixel response when
- it is directly illuminated by the laser
- adjacent pixels are illuminated
- Threshold: 3σ above pedestal

Integrated signal charge (QDC bins)

ADC Channel 25, Laser on channel 40

10

10²

Hit distributions

Aerogel with n=1.05: radius

- Expected radius for pions ~110mm
- Larger radius, better resolution for larger t

- measured ~120mm \Rightarrow \Rightarrow
 - increasing with t
 - more p.e.

 \leftarrow

Runs with mirrors

1 sector RICH

