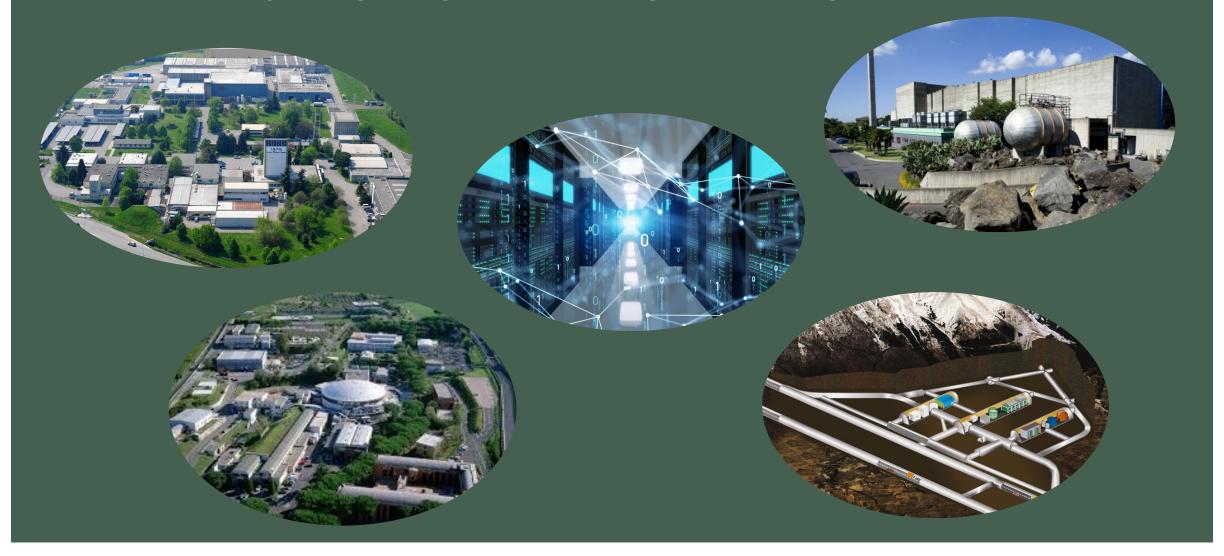


https://www.infn.it/istituto-infn/sostenibilita-ambientale/

ENVIRONMENTAL REPORT 2024

PERIODO DI RIFERIMENTO 2021-22-23-24

IMPATTO AMBIENTALE DELLE ATTIVITA' DELL'ENTE



CO₂
CARBON
FOOTPRINT

STRUTTURE PRESE IN ESAME

Energy Manager

- Gaetano Schillaci
- Augusto Goretti
- Augusto Lombardi
- Ruggero Ricci
- Luigi Scarponi

Esperti Ambientali

- Raffaele Adinolfi Falcone
- Maria Teresa Ranalli
- Daniela Benini
 - Paolo Modanese
 - Antonio Massara

MAKING CHANGE HAPPEN. MAKING LIFE BETTER

CONSUMI DI ENERGIA

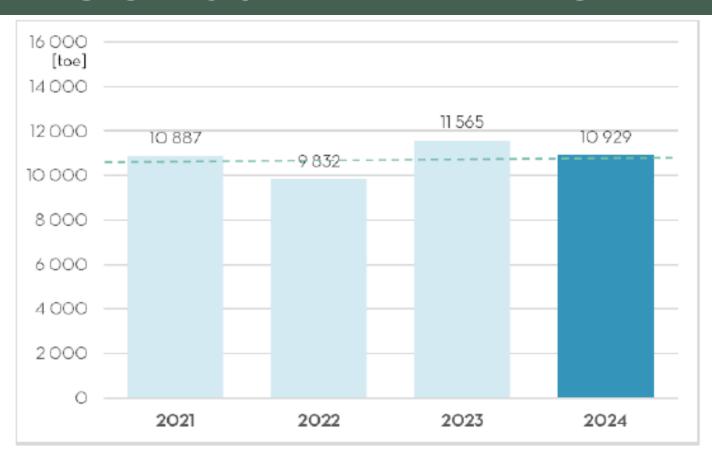
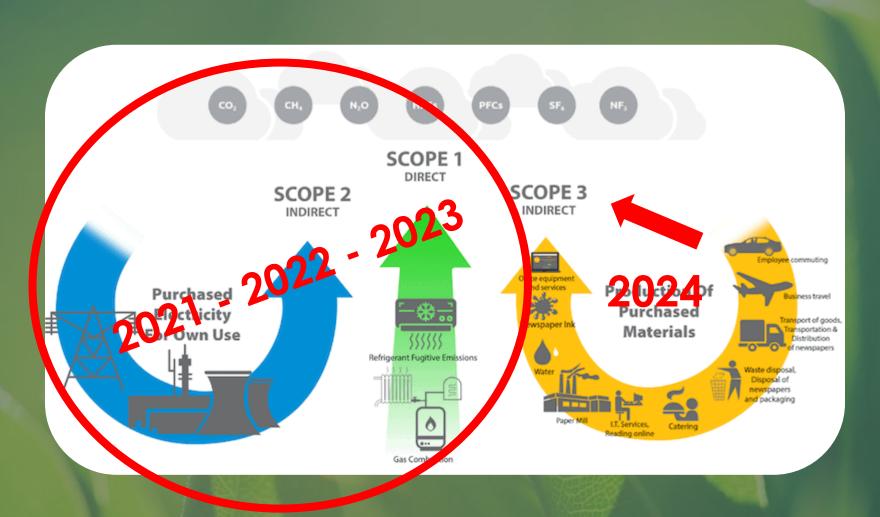


Figure 4. Trend of total energy consumption of INFN [toe].

Note: dashed line indicates the average energy consumption value calculated for the period 2021-2023.

CONSUMI DEI LNF



	UM	2021	2022	2023	2024
Machine time (DAφNE)	hours	3 063	1 475	4 176	2515
Employees (only staff LNF+AC)	n°	477	479	519	504
Built area	mq	28 512	28 512	28 512	28 512

	2021 GWh	2022 GWh
INFN	62	56
CERN	1 058	1 266

CARBON FOOTPRINT

METHODOLOGY GHG PROTOCOL e ISO 14064-1

EMISSIONE GHG $[tCO_2 eq]$ = **DA** x **FE** x **GWP**

Sixth Assessment Report of the IPCC

Dato di attività

Consumo	di energia elettrica: dettaglio per sito			2021					2022			
sm		INIRGIA ILETTRICA A.T. (KWI)	ENERGIA ELETTRICA ILT. (MN)	ENERGIA ILETTRICA B.T. (KWI)	EMERGIA BLETTRICA da dissovabile (MIN)	Totale TEP	ENERGIA ELETTRICA A.T. (SWI)	ENERGIA ILETTRICA M.T. (KWIN)	EMERGIA BLETTRICA B.T. (KWB)	IBNIPGIA ELETTRICA da ricovabile (KWI)	Totale TIP	
Cataria LA	s	•	5.679.211	32.625	0		0	3.617.761	36.531	0		
Gran Sasss	LNGS		9.647.969	0	0		0	9.409.311	0	0		
Francati U	NF.	21.742.976	0	0	0		15.298.950	0	0	0		
Legnaro Li	NL.	30.041.315	381.276	0	0		13.001.611	5.097	0	0		3
Bologna C	NAF	0	7.599.555	0	0		0	8.012.994	0	0		
Totale		31.784.291	23.302.011	32.625	0		28.920.561	21.045.163	36.531	0		
			Rifiuti perl	colosi			Kg	800		500	0	
	Gran Sasso LNGS		Rifiuti non	pericolosi			Kg	424.1	45	607.696	3.237	842
	Gran Sasso LNGS		Rifiuti perl	colosi			Kg	98.95	2 1	L143.614	14.8	99
	Frascati LNF		Riffiuti non	pericolosi			kg	48.29	0	44.000	44.0	56
	Frascati LNF		Rifiuti perl	colosi			kg	1.98	5	3.305	4.88	10
			Riffuti non	pericolosi			kg	199.3	34	261.654	140.9	91
Legnaro LNL		Rifiuti peri	colosi			kg	78.00	0	47.618	36.6	28	
	Delever Chief		Rifiuti non	pericolosi			kg	1.87	0	7.400	0	
	Bologna CNAF		Riffiuti perl	colosi			kg	0		0	0	

Fattori di emissione

Combustibile	Gas Naturale				
FE per CO ₂	2,004 tCO ₂ /smc	asse	t CO ₂ /It	t CH⊿/It	t N₂O/lt
FE per CH₄	O,103 g CH ₄ /Smc	uroó	2,65E-O3	3.59E-11	5,94E-08
FE per N₂O	O,003 g N ₂ O/Smc		2,05E-O5	3,39E-11	5,94E-U6
	-,g <u>g</u> <u>g</u> ,	pro3	2,65E-O3	8,55E-O9	7,28E-O8
Autovettura Diese	I	Euro5	2,65E-O3	3,23E-10	1,18E-O7
Autovetture Diese	I	Euro6	2,66E-O3	3,59E-10	9,40E-08

SCOPE 1 EMISSIONI DIRETTE DA GAS FUGGITIVI

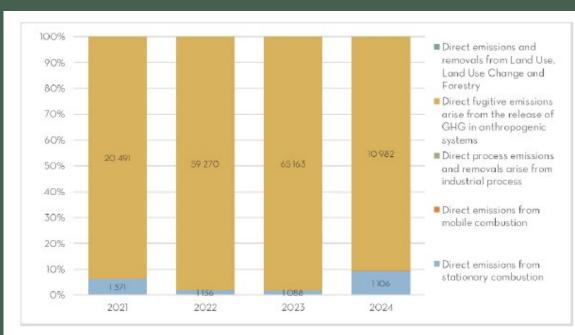


Figure 17. Breakdown of indirect GHG emissions in relation to total emissions.

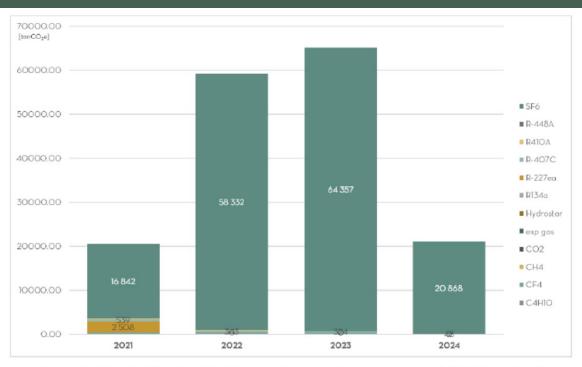


Figure 18. Trend of the direct fugitive emissions arise from the release of GHG [ton CO2e].

OBIETTIVO PER GAS FUGGITIVI

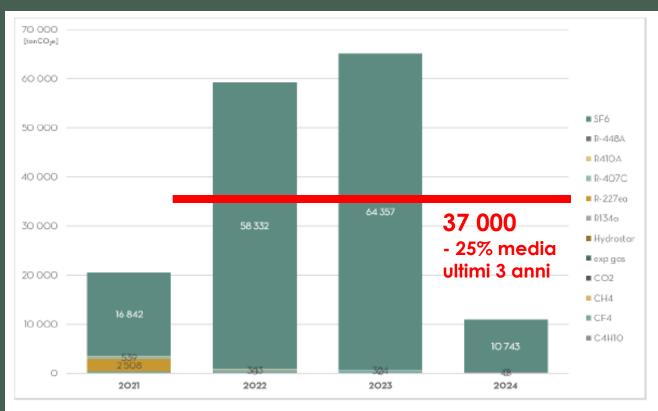


Figure 18. Trend of the direct fugitive emissions arise from the release of GHG [ton CO2e].

	SF6 (kg)
LNF	13
LNS	300
LNL	1000 2024: 442 kg 2023: 2360 kg

35 000 [tonCO₂e] 30 000 25 000 20 000 Indirect emissions from imported electricity (market-based approach) 15 000 Indirect emissions from 10 000 imported electricity (location-based 5 000 approach) 2021 2022 2023 2024 Figure 19. Trend of electricity indirect GHG emissions (Scope 2) [ton CO2e].

EMISSIONI INDIRETTE SCOPE 2

ton CO₂ equiv.

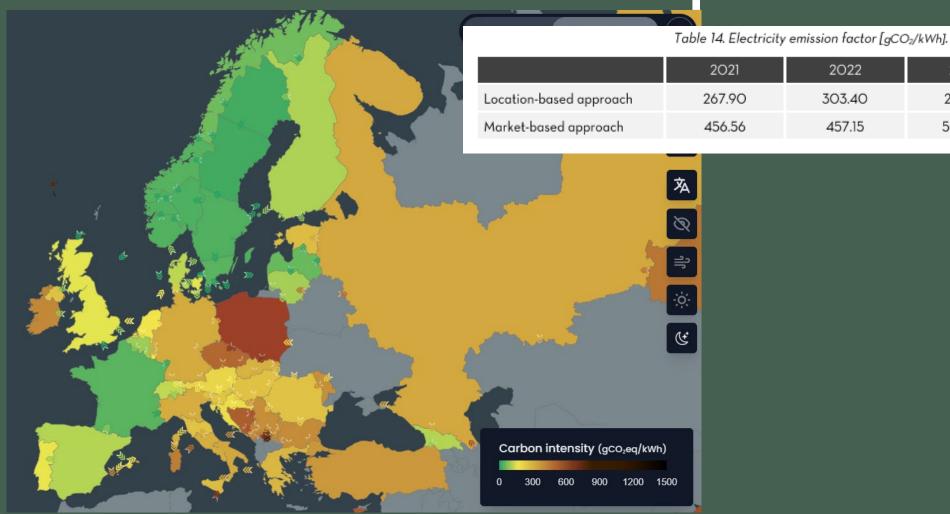
CO₂ equiv. per kWh confronto Europa-Italia

2022

303.40

457.15

2023


257.20

500.57

2024

215.90

441.20

CARBON FOOTPRINT - SCOPE 3

CARBON FOOTPRINT SCOPE 3

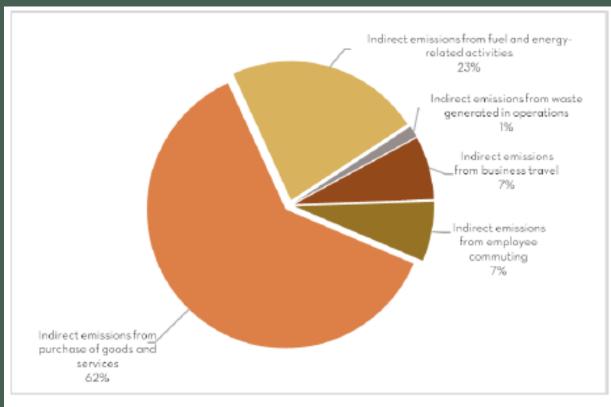


Figure 20. Breakdown of the indirect GHG emissions (Scope 3).

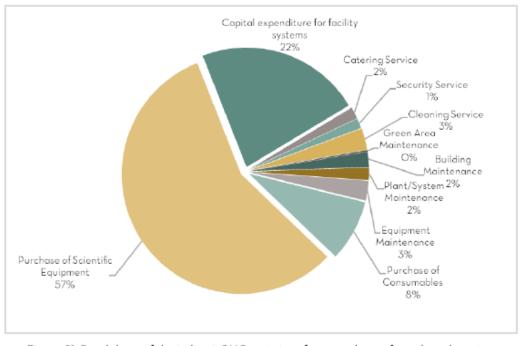
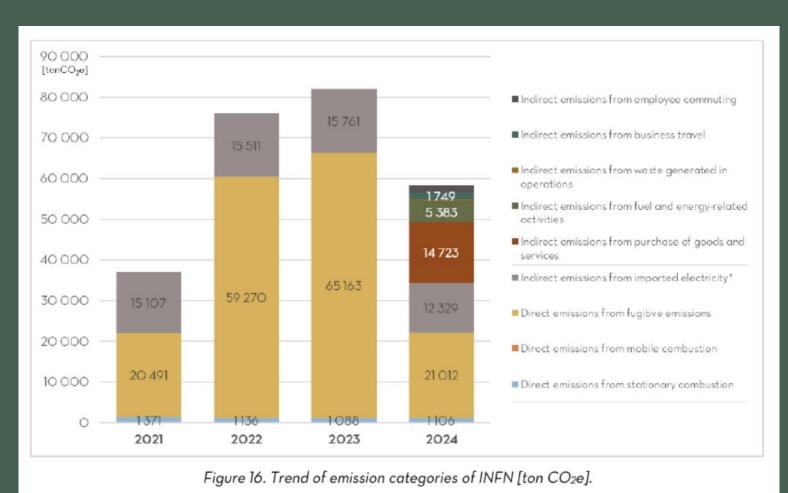



Figure 21. Breakdown of the indirect GHG emissions from purchase of goods and services.

 CO_2

CARBON FOOTPRINT RISULTATI FINALI

CARBON FOOTPRINT RISULTATI FINALI

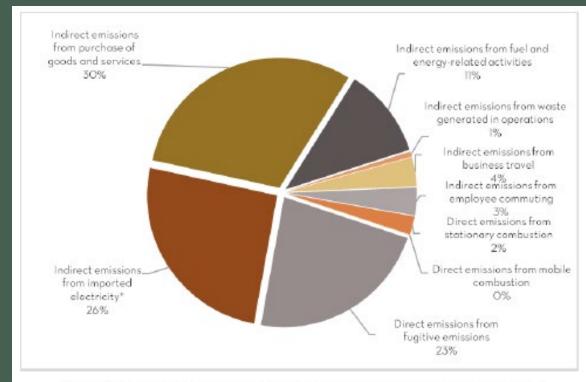
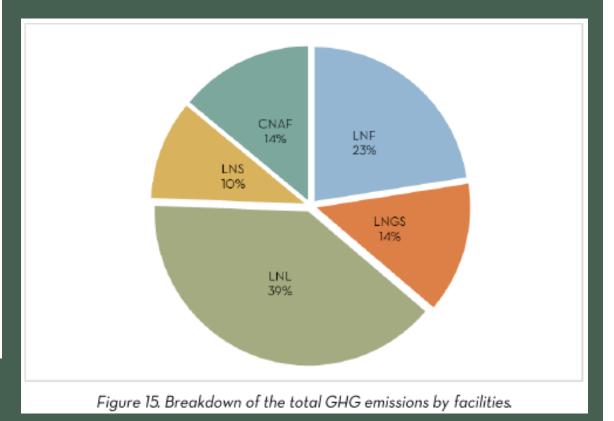



Figure 14. Breakdown of the total GHG emissions by emission category.

CARBON FOOTPRINT CNAF

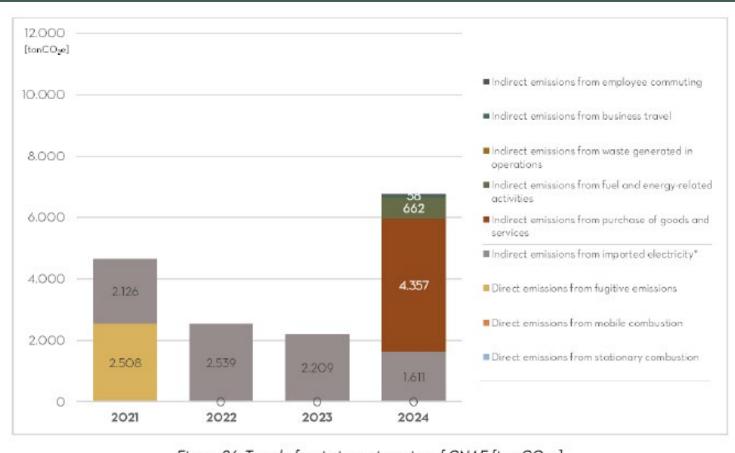


Figure 26. Trend of emission categories of CNAF [ton CO2e].

CARBON FOOTPRINT RISULTATI FINALI ton CO₂ e

	2024	1	CERN 2022	% CERN
Direct GHG emissions (SCOPE 1)	22 137	38%	184 173	51%
Electricity indirect GHG emissions (SCOPE 2)*	12 329	21%	63 161	17%
Indirect GHG emissions (SCOPE 3)	23 826	41%	113 930	32%
TOTAL	58 292		361 264	

WATER FOOTPRINT

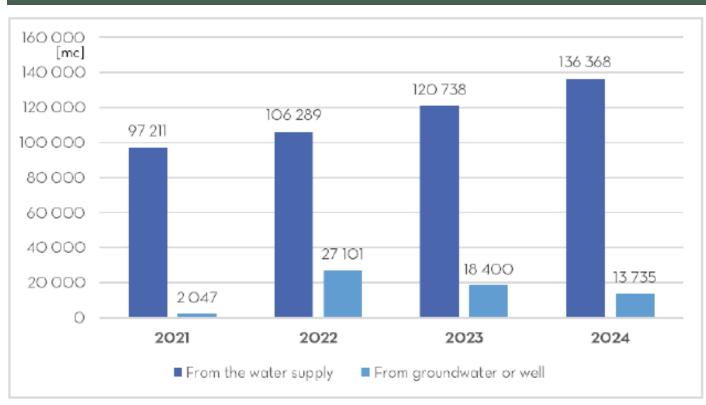
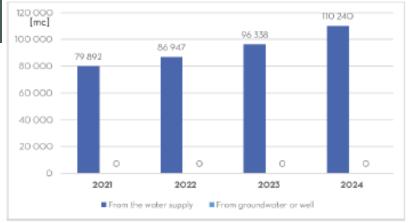
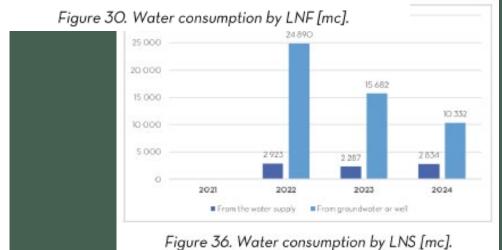




Figure 29. Total amount of water consumed [mc].

At the LNGS, the underground Labs use rock water (about 100 liters/second) that percolates thought the walls. The water is used for cooling experimental equipment and it can be considered a great energy saving and an environmental footprint reduction.

WATER FOOTPRINT obiettivi di miglioramento

[mc]

2021

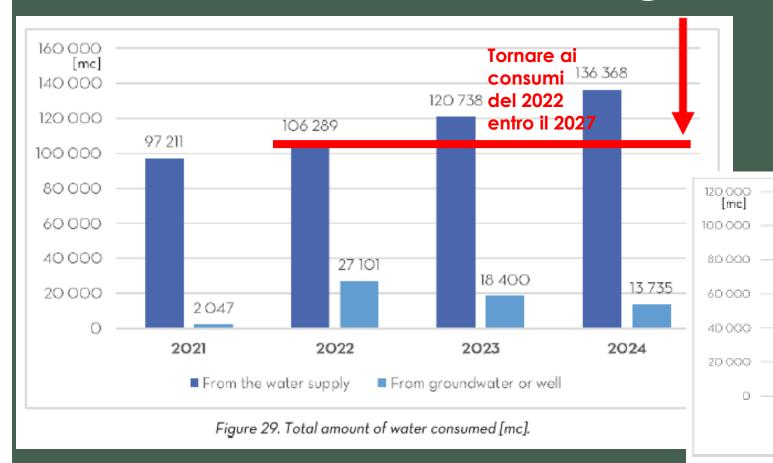


Figure 30. Water consumption by LNF [mc].

■ From the water supply
■ From groundwater or well

2022

86 947

HO 240

2024

96.338

2023

GESTIONE DEI RIFIUTI

Figure 39. Total amount of waste generated [kg].

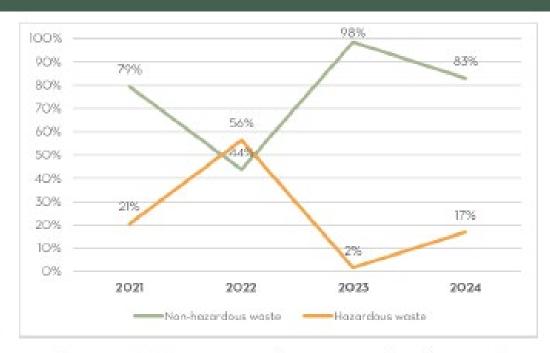
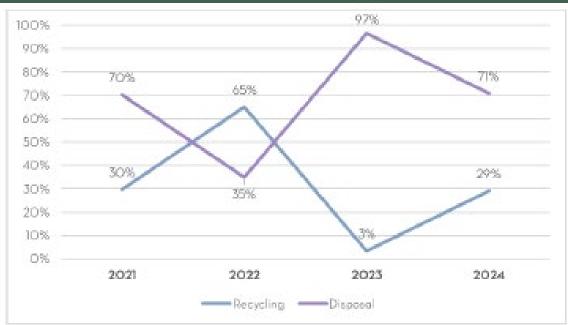
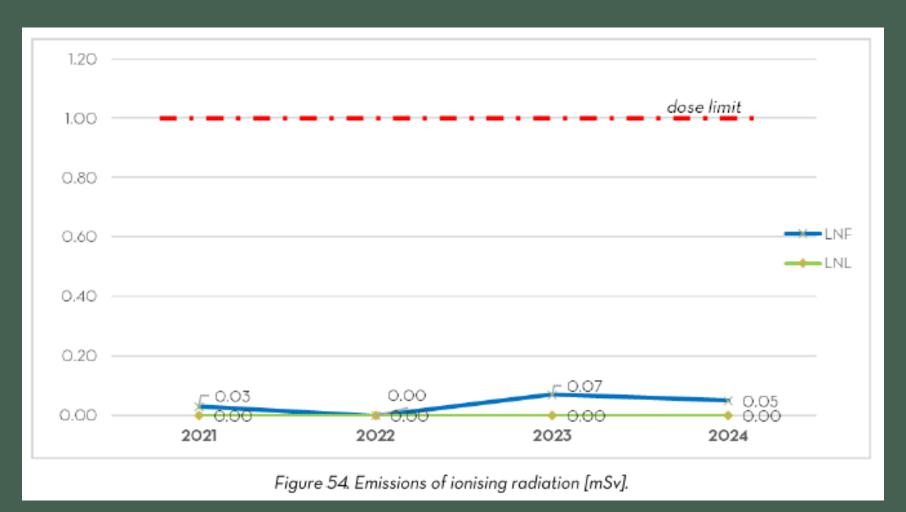


Figure 40. Percentage of waste produced to total.

GESTIONE DEI RIFIUTI

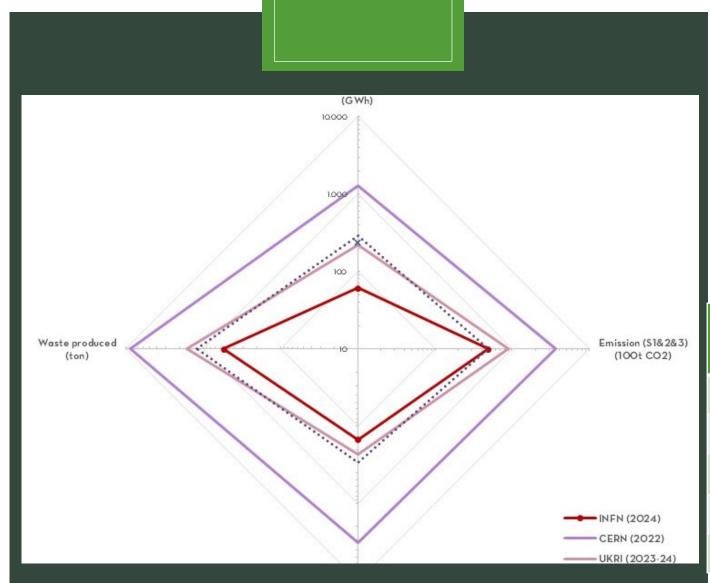

Figure 41. Total amount of waste treated [kg].

Figure 42. Percentage of waste treated to total.

RADIAZIONI IONIZZANTI

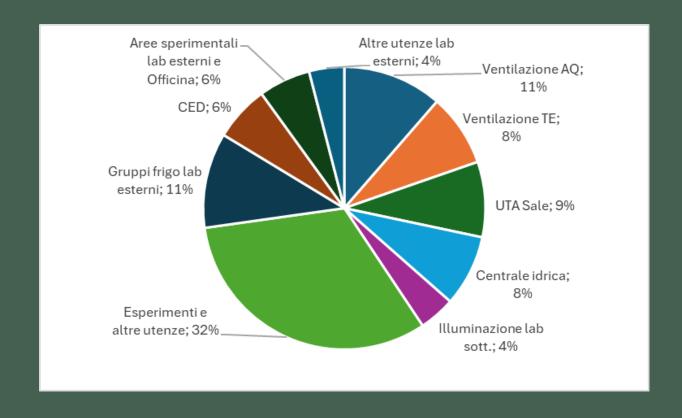
	Energy (GWh)	Emission (S1&2&3) (100t CO2)	Water (1000mc)	Waste produced (ton)
INFN (2024)	61	583	150	546
CERN (2022)	1.270	3.613	3.234	8.822
UKRI (2023-24)	220	898	230	1.616
CNRS (2022)	287	489	300	1200
DESY	238			

AZIONI PER RIDURRE LA CARBON FOOTPRINT

Gruppo di Lavoro per il risparmio Energetico: Energy Manager

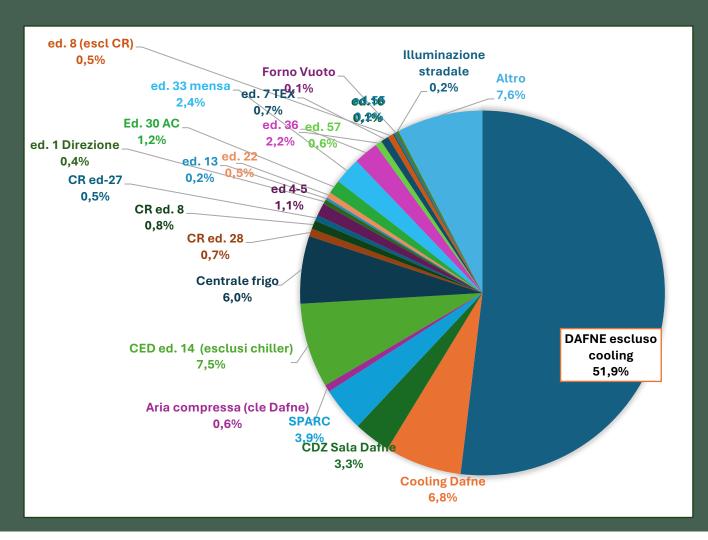
- Ruggero Ricci (Coordinatore)
- Augusto Goretti
- Augusto Lombardi
- Luigi Scarponi
- Gaetano Schillaci

Attuare misure per risparmiare energia


e

Valutare l'acquisto di energia verde

AZIONI PER RIDURRE LA CARBON FOOTPRINT FASE 2


- Individuazione dei centri di consumo principale e prima attribuzione dei consumi
- Ricognizione degli impianti di climatizzazione finalizzati ad individuare possibili applicazioni di riutilizzo di cascami termici o efficientamento
- ☐ Ricognizione degli impianti di cooling
- ☐ Sistemi di illuminazione e Relamping
- ☐ Individuazione di alcune proposte di intervento per una prima valutazione da far studiare a NIER

FASE 2 LNGS

Centro di carico elettrico	Consumo [kWh]	
Ventilazione AQ	1.100.000	11%
Ventilazione TE	800.000	8%
UTA Sale	832.000	9%
Centrale idrica	788.400	8%
Illuminazione lab sott.	400.000	4%
Esperimenti e altre utenze	3.100.000	32%
Gruppi frigo lab esterni	1.051.200	11%
CED	613.200	6%
Aree sperimentali lab esterni e Officina	574.880	6%
Altre utenze lab esterni	388.000	4%

FASE 2 LNF

Consumi Energia Elettrica	2024 LNF
	kWh
DAFNE escluso cooling	9.580.554
Cooling Dafne	1.254.311
CDZ Sala Dafne	602.510
Aria compressa Dafne	115.050
SPARC	726.288
CED ed. 14 (esclusi chiller)	1.386.678
Centrale frigo	1.104.336
ed. 36	401.980
ed.55	28.000
ed. 1 Direzione	75.073
ed. 8 (escl CR)	356.447
CR ed. 8	141.731
ed 4-5	210.951
ed. 22	92.803
ed. 13	40.724
ed. 7 TEX	255.000
ed.16	17.459
CR ed. 28	127.136
CR ed-27	91.541
Ed. 30 AC	225.320
ed. 33 mensa	439.500
ed. 57	108.553
Forno Vuoto	11.625
Illuminazione stradale	44.968
Altro	1.013.759
Tot 2024	18.452.296

Breve descrizione intervento LNF	Centro di carico interessato	Consumo annuo attuale
Sostituzione vetri e/o Infissi ed. 36		85 MWh di energia elettrica per raffreddamento estivo ed.36
Sostituzione infissi ed.1 - 2 - 30	FO 1-7-30	60 MWh EE condizionamento ed. 30
Riqualificazione ed. 22 (infissi, + climatizzazione) in aggiunta a coibentazione copertura e FV	ed. 22	51 MWh inverno 33 MWh estate
Recuperatore di calore per ACS chiller ed. 33 (mensa)	ed. 33	3500 smc evitabili
Ampliamento rete teleriscaldamento	ed 22-4-5-7- 7b- 8-55 -57 -30 -33	Utilizzo di ulteriori 1 GWht
LNL		
Centrale Tecnologica ALPI: Installazione di nuovo GF ad alta efficienza per funzionamento principale, eventualmente con recupero ed eventuale nuovo GF per funzionamento a carico ridotto	chiller degli impianti di raffreddamento e condizionamento	2,3 GWh
Recupero termico da nuovo DC mediante GF W/W e linee di collegamento ad anello termico	Riscaldamento edifici	230.000 SMC metano evitabili
Centrale TANDEM (ma ne va valutata la prospettiva di vita e i carichi reali): GF dedicato (magari con FC) per la sezione a 20 C.	chiller degli impianti di raffreddamento e condizionamento	700 MWh
Progettazione e realizzazione di un impianto di produzione di energia elettrica fotovoltaica	consumo energia elettrica, possibili convenzioni per manutenzione	
Illuminazione a led con retrofit o sostituzioni.	IMPIANTA AL III IMINAZIANA	217 kW di illuminazione convenzionale riducibile al 30%
riattivazione ed automazione delle letture dei consumi per tutte le cabine media-bassa e per tutti gli apparati energivori	impianti elettrici civili e industriali	in corso di valutazione
Valutazione energetica degli edifici con proposta di efficientamento di coibentazione ed illuminazione	a valle di un monitotoraggio annuale dei consumi	
LNGS		
Strumentazione e lavori per analisi dei carichi (da riportare sullo SCADA)		
Rifacimento coperture e terrazze piane Sostituzione UPS laboratori esterni e centralizzazione rete di distribuzione		
Installazione inverter sulle UTA di Sale e sulla cabina di Assergi		1.9 GWh
Completamento pannelli solari sui tetti		1.7 0711
Pannelli solari nelle aree parcheggio (da valutare con Parco)		
Sostituzione infissi lab esterni		
LNS	0000	
impianto fotovoltaico in copertura	8000 mq disponibili in copertura + fa	cciate
Efficientamento energetico del corpo di fabbrica "nuova Sala Misure" Revisione degli impianti di raffreddamento per ottimizzare il funzionamento delle macchine esistenti e		
mettere a fattor comune le ridondanze	Attività in corso, finanziata su fondi e	sterni.

AZIONI GIA' INTRAPRESE PER IL MIGLIORAMENTO

LABORATORI NAZIONALI DI FRASCATI

- Sistema di recupero del calore dal raffreddamento del Data Center: 1 GWh/anno per riscaldare il 45% degli edifici, in servizio dal 2014. Il nuovo Data Center ICSC, in costruzione, integrerà la stessa soluzione per coprire il riscaldamento degli altri edifici.
- 1,1 MW Fotovoltaico con rifacimento del tetto su 20 edifici, da completare nel 2025.
- □ Aggiornamento dell'illuminazione LED ad alta efficienza realizzato per fasi: esterno completato, aree comuni e officine al 90%, uffici al 50%
- ☐ Sostituzione finestre edificio n. 4
- DAFNE ha avuto attività rilevanti in termini di efficienza energetica durante il 2007-2012 con una riduzione della domanda di potenza da 5,9 a 3,3 MW grazie ad azioni di miglioramento su magneti Wiggler, RF e controllo dei sistemi di raffreddamento. I driver a velocità variabile per pompe e ventole dopo l'analisi producono ulteriori miglioramenti.

LABORATORI NAZIONALI DEL SUD

- Riqualificazione dell'involucro edilizio (tetto, parete, serramenti) e installazione di elettropompe ad alta efficienza.
- □ Installazione luci LED nel 100% delle aree interne (ad alta permanenza) e circa nel 50% di quelle esterne, sensore di presenza per luce nelle aree comuni.

AZIONI GIA' INTRAPRESE PER IL MIGLIORAMENTO

LABORATORI NAZIONALI DEL GRAN SASSO

7.5	DONATORI NALIONALI DEL ORAN SASSO
Gi	à attuati:
	sostituzione gruppo frigorifero lab esterni con uno più efficiente (700 kW frigoriferi);
	illuminazione led dei piazzali esterni;
	Illuminazione led galleria auto.
In	corso (con fondi PNRR):
	installazione pannelli solari con potenza di picco 400 kW;
	centralizzazione ridondata della distribuzione UPS dei Lab sotterranei (300 + 300 kW); si passa da un
	rendimento medio dei vecchi UPS di 0,7 ad un rendimento di 0,975;
	completamento illuminazione led lab sotterranei (circa 720 corpi illuminanti);
	illuminazione led di tutti i lab esterni (circa 1200 corpi illuminanti);
	coibentazione dell'area uffici della hall di montaggio, con installazione di pompa di calore;
	ottimizzazione della ventilazione dei lab sotterranei e sostituzione degli inverter di potenza con nuovi invertir
	più efficienti;
	dotazione di inverter delle principali Unità di Trattamento Aria con possibilità di regolazione (al momento sonon/off).

AZIONI GIA' INTRAPRESE PER IL MIGLIORAMENTO

LABORATORI NAZIONALI DI LEGNARO

- Impianto di recupero calore: una unita di raffreddamento (chiller) al servizio dei magneti di Alpi, terza sala e compressori elio, è equipaggiata per il recupero di calore totale per la potenzialità di 450 Kw alla temperatura di 50-45°C. durante il funzionamento del complesso Tandem-Alpi e degli apparati criogenici, il calore viene recuperato e utilizzato per il riscaldamento degli edifici: Terza Sala, Tandem, foresterie, Mensa, Utenti e Auriga
- □ Sono stati installati sensori di presenza in alcuni servizi igienici, all'esterno e in centrale termica sono state installate lampade esterne a basso consumo
- E' iniziata una collaborazione con la facoltà di Ingegneria di Padova con una tesi magistrale di studio di fattibilità di un impianto fotovoltaico

CNAF

Con il trasferimento al Tecnopolo passeremo da un **PUE** attuale di 1.7 ad uno stimato di 1.2-1.3. Inoltre è stato migliorato l'impianto di raffreddamento che prevede l'utilizzo di gruppi frigoriferi con compressori a levitazione magnetica e set point delle temperature dell'acqua più alti che si traducono in maggiore utilizzo del free cooling.

Generale constante sensibilizzazione degli utenti sulla necessità di ridurre i consumi in tutto l'Ente