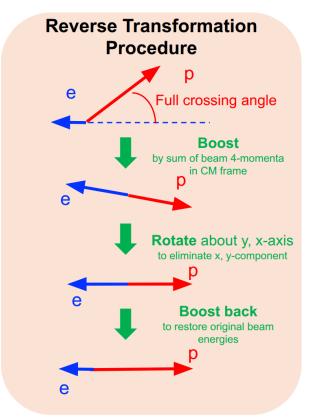

• DPDF Meetings

+

Follow up

- Alex spoke about the RP resolution, inhis talk he confirm what Oliver said. Basically they have a new method for RP reconstructions
- Unfortunately this means that the rad/norad need to be simulated again (can be done over weekend)
- Roman pots should have good precision, see Alex's talk: https://indico.bnl.gov/event/26543/#4-rp-reconstruction
- Reco method: tRECO BABE



From Alex's talk May 2024

How to Get Back to True MC from Afterburned

Boost and rotation is determined by beam particles of event (event-by-event)

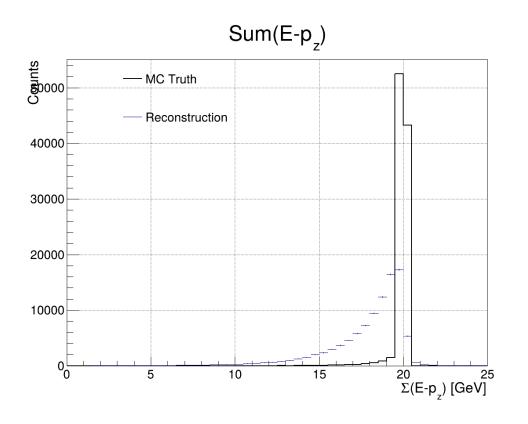
o Two approaches

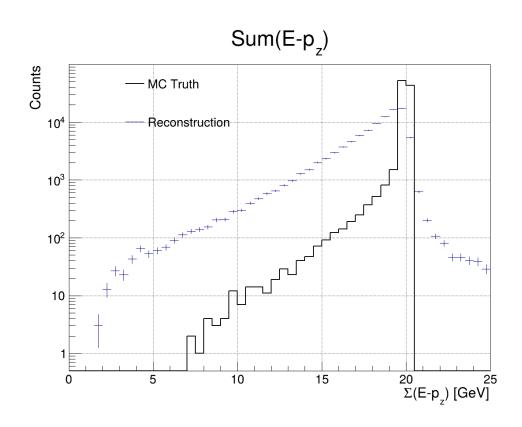
- True MC events for true MC to full-reco comparison
 - Remove ALL effects to get back generated MC information.
- Realistic events remove only crossing angle, keep beam FX in events
 - This is an important distinction!! Crossing angle can be accounted-for in real events, but beam effects such as angular divergence are random and cannot be removed from a real event!

https://indico.bnl.gov/event/23345/contributions/91606/attachments/54642/93490/Analysis%20of%20ePIC%20Output%20With%20Afterburned%20Events.pdf

How to Get Back to True MC from Afterburned

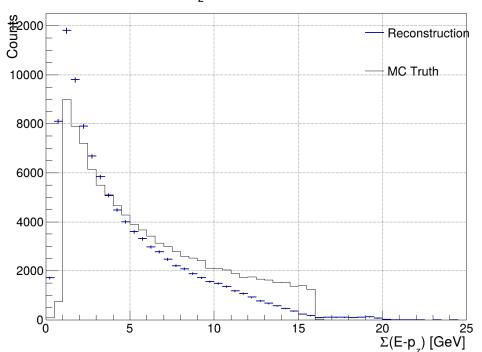
```
// Accessing final-state particles
for(const auto& v : evt.vertices())
{
    for(const auto& p : v->particles_out())
    {
        TLorentzVector mc(p->momentum().px(), p->momentum().py(), p->momentum().pz(), p->momentum().e());
        mc.Boost(b);
        mc.RotateY(rotAboutY);
        mc.RotateX(rotAboutX);
        mc.Boost(bb);

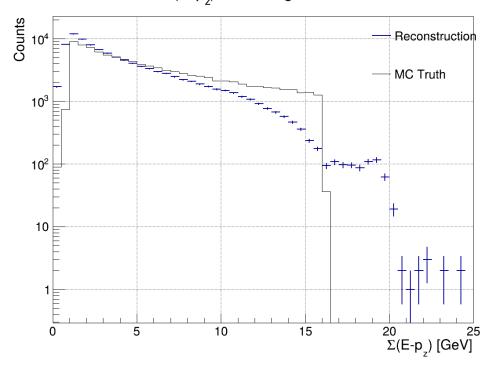

        // After this, all particles are back to true MC level
    }
}
```


o <u>Two approaches</u>

- True MC events for true MC to full-reco comparison
 - Remove ALL effects to get back generated MC information.
- Realistic events remove only crossing angle, keep beam FX in events
 - This is an important distinction!! Crossing angle can be accounted-for in real events, but beam effects such as angular divergence are random and cannot be removed from a real event!

1: Overview - Kinematic Distributions


• E – p_z, including the scattered electron, should peak at, $2E_e = 20 \text{GeV}$



1: Overview - Kinematic Distributions

- E p_z, excluding the scattered electron, should peak at 0 GeV,
- Since we had a lower cut for 'y', it peaks at $2y_{\min}E_e$
- Similar cut imprint for max of 'y'
 Reco Sum(E-p₂) excluding scattered electron

Reco Sum(E-p₂) excluding scattered electron

$$y_{\rm JB} = \frac{1}{2E_e^{\rm eff}} \sum_h (E_h - p_{z,h}),$$

Simulation Campaign Request

- Generator validation successful no issues observed with RAPGAP
- Requested samples: RAPGAP version: v3.310
- 10×130 GeV Diffractive inclusive events with & without QED radiation (Priority Early Science Study)
 - Target statistics: Considering a luminosity of $10\text{fb}^{-1} = 10^7 \text{nb}^{-1}$, this corresponds to a number of events of: $4.22(\text{nb}) \times 10^7(\text{nb}^{-1}) \simeq 4.2 \times 10^7$ events
 - Original target: 42M events for full statistics —> Optimized: Factor 10 reduction with statistical error rescaling
 - 4M events with radiative effects (pseudodata)
 - 4M events without radiative effects for study of rad corrections (also used MC for acceptance/efficiency)
 - Total: 8M events
- 18×275 GeV (Saturation Studies) Diffractive inclusive events (with/without QED radiation)
 - Cross section: $\sigma \approx 7.38$ nb
 - Request: 7.5M events with radiative effects (pseudodata)
 - Request: 7.5M events without radiative effects
 - Total: 15M events

Kong's comment/requsts

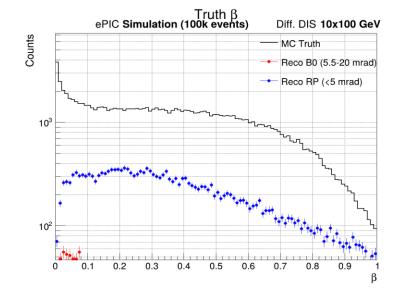
Hi Hadi,

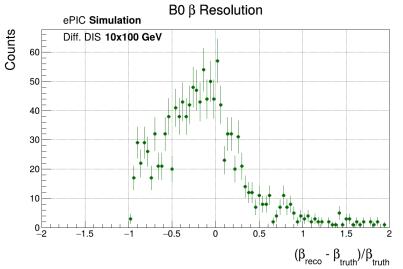
Thanks for the virtual updates.

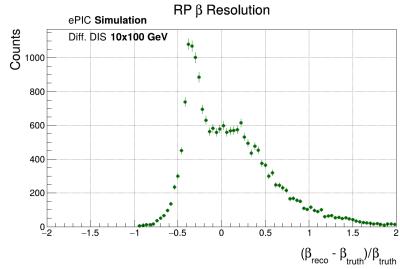
Comments:

- It is not clear to me the samples have radiative effects or not; I remember you had the comparison before, but not sure if that still applies as you have many updates now? A comparison with and without this effect was previously shown and may need updating.
- I like the QA checklist plots and comparisons among different method. Since you are doing a similar analysis as Win, it may be useful to make a similar Q2 vs x plots to illustrate the phase space and most importantly, uncertainty. Would be nice to show us
- what method works best for which phrase space. You already asked this too, will do this after the cross section. Phase space coverage
- Maybe I forgot, do you have a eta_max distribution? Remember at HERA, there were two methods to do diffraction. One with tagged proton, while the other only via the eta_max in your tracking/calorimeter. Similar to my comments to others, we should also explore the two methods and show the full capability of ePIC.
- For the simulation request, please follow the instructions which I hope you know what they are. (a form + github repo for version
- control). Salvatore sent me the form, I don't know about github repo. From this point I infer that he's on board with sample request.

Looking forward to your update next week.


Now working on


- Working on beta, $\beta = \frac{x}{x_{\mathbb{P}}}$
- Triple differential reduced cross section


$$rac{\mathrm{d}^3\sigma}{\mathrm{d}eta\,\mathrm{d}Q^2\,\mathrm{d}x_\mathbb{P}} = rac{4\pilpha^2}{eta Q^4} \left[1-y+rac{y^2}{2}
ight]\cdot ilde{\sigma}^{D(3)}\left(eta,Q^2,x_\mathbb{P}
ight).$$

where:

$$\left(ilde{\sigma}^{D(3)}\left(eta,Q^2,x_{\mathbb{P}}
ight) = F_2^{D(3)}\left(eta,Q^2,x_{\mathbb{P}}
ight) - rac{y^2}{1+(1-y)^2}F_L^{D(3)}\left(eta,Q^2,x_{\mathbb{P}}
ight)$$

