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The dynamic part of the amplitude

Breit-Wigner functions widely used in the first analyses AND by High

Energy Experiments

o Useful only for one resonance at a time without any interference
= Single resonance
m  Single decay channel

Much more complicated situation

o Resonances have several decay channels

o Several resonances sharing the same decay channel (interference)

o Line shapes distortions due to threshold openings and sudden change of available phase
space

Thorough approach needed
Simplifications to be applied in a second step



T vs S matrix

h
Recall: scattering amplitude via partial wave expansion \
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K vs S vs T matrix

T is a nxn matrix representing n incoming and n outgoing

channels

O from its unitarity properties follows:
m (TH1-T1=2i1

K-matrix definition

Kl1=T"1+i1

o K is a hermitian operator

o Due to time invariance: K REAL matrix
= Under threshold it can be continued analytically
m T and Kcommute

T=K(1-iK)'=(1-iK)K




Single channel problem

T matrix: T = (e29-1)/2( = e¥sind
o Argand plot: C(0, i/2), r=1/2

S matrix: S = e?

K matrix:
o K'=T'"-i(=ctgd
o K=tgo = poleforod=mn/2
m Recall Breit-Wigner function derivation...

2

Cross section (S wave): <4n) -y
o = Sin
q;




2 channels problem (i.e. KK + 7n)

K = (K11 K12) K
—_ 11
K21 KZZ T T T
K, ., K,
determinant K
21
D = K11K; — Kfy K T K
Kis real, K,, = K,
T matrix;
T — 1 <K11 —D Ki, )
1—-D—i(Ky; +Ky;)\ Ka1 Ky —D




Relativistic extension

T is not relativistically invariant
O One must insert the phase space-matrix elements of the initial and

final state
. . . 2q,

p: phase-space matrix, diagonal — 0
O Can become complex under threshold P= . 2q;
m

Covariant description of T, S and K:

1 1 1 1
T={p}2T {p}2 S=1+2i{p}2 T {p}2

=

1
={p}2 K {p}2 K'=T"'+ip .



Let's go back to Breit-Wigner functions...

» Single resonance with single decay channel
o simplest dynamical function

o Several derivations possible
1. From phase variation
m Resonance: o = n/2
2. From the decay of unstable states
- 3. From field theory
4. From K-matrix




Breit Wigner pdf from wave functions and
particle decays

The wave function for a non-stationary state of frequency w; = E;/#
and lifetime t=#4/T" can be written as

St
P(t) = Woe t@rleT 2T
Its Fourier transform gives, as a function of w:

K
(Er — E) —i(T/2)

T .
lP((A)) = E j l/)(t)e_lwtdt =

Since o, ~ Y*V¥:

r/2 I'2/4

» 41
Y(E) = o el=7(2l+1)

(Er — E) —i(T/2) (Er — E)? —i(I'?/4)
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T-matrix & field theory: resonances

® Infield theory a resonance is described by a propagator

..... 1
g =)  T=Veg—phe

© If a self-energy term is present

M, M, M, 1 1 Vi,cV.
~moo me _ _ 12CV12
o =) T=v Fo—E Eo—E 2~ (B~ E)?

Every loop involves a complex coupling ¢
If the coupling is small, the expansion converges like a geometric series
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T-matrix perturbative treatment

M 1 m M 1 M 1 M 1 M 1 M 1 M
.\“l mo -‘ - mo S mo l
______ e = 7 . + . ann +
M, M, M, M, M, X M,
M 1 M 1 M 1 M
MmN Mg My~
M, M, M, M, + .

Eg—E
_ _Vi2Vi2
Eo —E-cC
defining the “dressed” energy T — V12V12
"”:> Er — E — i3m(c)
Ex = E5- Re(c)
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Relativistic Breit-Wigner function

Formulation to be used in any meson spectroscopy experiment
From the optical theorem:

~ _qvs o 4 N .2q
Sm(T(s,0)) = 7 ——or [ el OE 5 (c0td =) =k(s) —i 2
k(s) is any real function
T-1 has a peak at k(s)=0
Simplest covariant form for k(s): (se-S)/y
14 I

T(s) = =

SR—S—l'(Zﬂ) mz —m?2 — ipmgl

Vs
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Non-relativistic vs relativistic Breit-Wigner
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Argand plot & phase motion
o (almost) equal: non-relativistic vs relativistic BW

Intensity
o Narrower line-shape in the relativistic case
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Resonances in K-matrix formalism

Formation of resonances: sum of poles of the K-matrix

If the amplitude is dominated by resonance formation the K-matrix
elements (Lorentz-invariant) may be written as

Z - 9ai(M)Gaj (m)

J (ma - mz)\/plp]

The g/'s are residual functions, real above the " channel threshold and
proportional to the i channel partial width

gczzi(m) = Mgl (M) Fe(m) = z [i(m)

The total width of a resonance is a sum of partial widths
over different decay channels 15




Partial widths & centrifugal barriers

The widths of the resonances, in a covariant formulation of the

decay amplitudes, are mass-dependent and proportional to g?'+7
o centrifugal barrier factor
o Taking out the phase space factor: 7"~ g?
m The lifetime is related to the centrifugal barrier
o Valid only at low energies and close to thresholds

o Motivation: suppression of the cross-sections in L#0 waves when the

impact parameter b is large (or the break-up momentum is small)
m Damping factors needed

Blatt-Weisskopf formulation L(L+1
: VL +1)

q
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Blatt-Weisskopf centrifugal barrier factors

Derived from the solution of the radial differential equation

©  Proportional to spherical Hankel functions

For{=0 up to 3: withr ~ 1 fm

Fo(q) =1

13(gqr)*
((gqr)? —3)2 +9(qr)?

F
Bi(q,qr) = %
BZ(q)T
T —
&) = - ipBf (q)moT

Relativistic Breit-Wigner

amplitude

with damping factors
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Resonances coupled to many channels

The partial widths are unknown and can be expressed through

complex parameters to be adjusted by the fits
o The residual functions read as

Jai (M) =i / maTg Bai(q, 4a)VPi

Fit parameters Centrifugal barrier
§;Y§i=i1 (normalized to 1) function
i

Phase space

The K-matrix widths do not have to be identical to the observed widths nor to

T-matrix poles widths
o Only if the masses of the decay particles are much smaller than the mass of the
resonance: T, (mg) =~ IY

A Vaimaele BLi(q,q2) Bhi(q
Kl](m) — zyalya] a~a a’l(q Qa) aj (q qa)

2 2
m,—m
o a
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Example 1: one resonance, one decay channel,
spin 1 (e.g., a p)

_ mel'(m)

K matrix: = tan

=
mg—m

Mass-dependent width:

3
I'(m) = ThplB1(q, Clo)]2 = (?bs (@) <i>

T matrix;:

2
o moly bs q moN [ 4
T = ié 6 = —_ —_ —_
¢ s ma —m? — imy,I'(m) \qo ( m ) 90

ﬂ 2-body phase space

P-wave factor 19




Example lI: two resonances (a,b), one decay
channel, spin zero

_ Mg l_‘a (m) mp l_‘b (m)

(2 x 1) K-matrix: K =

m2 —m?  mi—m?

If m, and m,, are far apart relative to their width (so they do not
overlap), the K-matrix is dominated by one of them depending on

the m value
O In this case the transition amplitude can be written as a sum (but this is an
approximation because unitarity is violated!)

- mg 9P (ma) AN my [P (mb) q
" m2 —m?—im,T,(m)[\m/\qq mi —m? — im,T,(m) |\ m/ \qp
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Sum of resonances: same mass

If two resonances have the same mass (and in this case only!) one
can sum their widths: m, = m, = m,

mo|l(m) + I, (m)]
mg —m? — im, [T, (M) + I, ()]

T

IR

Remember: the simple sum of amplitudes violates unitarity

= /20N AR AR AR AR AR RARRRAR O
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Sum of resonances with nearby masses

Example: two nearby resonances decaying into nwt, with the same
spin

o f(1275): m, = 1275 MeV/c?, I, = 185 MeV

o f,(1565): m, = 1565 MeV/c,, I}, = 150 MeV

The sum of Breit Wigner amplitudes violates unitarity

R Argand plo Inelasticit
Eqgql T g = T T T T 3
£ I ,
1t : 06: : —— 2 Breit Wigner's
08t 1 04t 1 —  K-matrix
06 E 02 3
041 3 o
0.2 ] .0.2\/ \/
of ]
o2 Py ] Phase shift Intensity
-0.8-0.6-0.4-02 -0 02 0.4 D%é)hs) T T a2 12 16 1s E sf T T T T =12 T T T 3
m [GeV/c)] s
st
Phase shift: move backwards JJ
1 ] 2
Intensity: exceeds unity e I e e T

m [GeV/c] m [GeV/c?]
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Example Ill: one resonance, two decay channels:
coupled channel analysis

o (1x2) K-matrix

© Practical case: fy(1500) —zz, KK, T=100 MeV
o Test of different couplings:
m 7w dominated resonance (I', .= 80 MeV)
n KK dominated resonance (I',.= 20 MeV)

1

Argand Plot |

|
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If the KK coupling is large the measurement of the 7z phase shift is not
enough to claim for the existence of a resonance
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Example IV: one resonance, two decay channels,
one close to threshold

2
yimely  yivamgly
2 _ 02 2 _ 02
mg—m mg—m
2
Yivamely  yamply

2 _ 2 2 _ 2
mg—m* mg—m

o (2x2) K-matrix o_

® Practical case: a,(980) —»nr || a,(980) — KK with J=0
o a,(980) close to KK threshold

P moly Y12 Y1Y2
T 02 a2 T 2 4 2 2
my—m imolo(p1yi + P2V5) \Vav2 V5

Flatté formula
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Flatté vs Breit-Wigner amplitudes

Argand Plot |
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@ The Breit-Wigner parameterization
follows the unitarity circle

@ Flatté:

©  nrm channel: _
m  Inelasticity: drop at the KK
threshold
m  Line-shape: OK

o KK channel:
m  Inelasticity: smaller circle
m  Line shape: dramatic
distortion
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Production of resonances: P-vector

Extension of K-matrix formalism to more complex reactions

(resonances not formed in s-channel)
o Effect of Final State Interactions

Assumptions:
o The two-body system in the final state is isolated
o The two particles do not interact simultaneously with the rest of the
particles in the final state

The production of a resonance is described by the P-vector

T=(1-iK)"'K F=(1-iK)"'P=TK P

26



P-vector properties ‘

P contains the same set of poles of K and both are built the same way

“' Information on
/\ resonance
Information on the p RgRl( m) width/decay

= -+ d;
resonance l 2
— M= )+\/Pi
production R ) \ Constant term or

polynomial
A linear term can be introduced to account for non resonant contributions to

the final state

For a single decay channel and a single resonance:

F=ecosé P

o  The final state interaction brings in a factor e

o  Pis areal function

27



Production of resonances: Q-vector

The P-vector has the same singularities (poles, “left hand cuts” due to
threshold opening) of K-matrix, depending on the reaction

In a limited energy range P can be considered as a constant vector Q
o Q depends only on s=m?
o Q has not threshold singularities
o Q does not contain poles

N

F=T0 Q=K'p

P or Q: two equivalent approximations
O P: (T-iK) propagator x a constant (to be determined by the fit)
O Q: T xa constant (to be determined by the fit)

28



N/D approach

Derived from dispersion relations
o Maximum analiticity
o Unitarity

The amplitude T, may be expressed by dispersion relations derived from the
optical theorem = integral equations

T, can always be expressed by a ratio of functions, correlated by a solvable
system of integral equations

Contains only left-hand singularities
/
Ne(s)

I Contains only right-hand singularities

29



Amplitude singularities vs resonances

Poles: zeros of propagators

o K-matrix and T-matrix poles are located in different positions

m They are similar if:
Resonances are very far apart
The coupling to non-dominant channels is very small
They are far from thresholds

m If these conditions do not hold:
Interference mechanisms move the pole positions

Cuts: opening of thresholds
o s channel: right hand cut
o t, u channels: left hand cut

30



Cuts and Riemann sheets: Right Hand Cuts

,o(m) IS a square root: p(m) = V(2q/m)

Below threshold (g=0) p(m) gets complex
m there are 4 solutions, every pair of roots lie = rad apart

o For each threshold a pair of Riemann sheets Im(E) vs Re(E) opens (each

for one of the roots)
o The cut between sheets is taken (by convention) on the real axis and

starts at the channel threshold
o s channel cut: right hand cut (RHC)

Im(E) T

I 1AY

> Re(E)

nl o

KK-threshold
nr-threshold
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Cuts and Riemann sheets: Left Hand Cuts

Singularities in t- and u- channels:

O Usually they appear below threshold

O Not taken into account in K-matrix

O They can imitate resonances and influence the amplitude in the physical
region

O t-, u- channel cuts: left hand cuts (LHC)

4m?*-4m/ 1
7 A
4m’*-m/’
Left-hand ,,I .\' Im(E)
cuts 1 » Re(E)
/ \ right-hand cuts




Resonances? Properties of T poles in the complex
E plane

T matrix pole: zero of the complex

denominator D
o DE+1(I/2)=0 :
o  Mass: real part of the pole Im(E) physical plane - Sheet I
o  Width: 2x imaginary part

1 > Re(E)
The position of the pole in each Riemann 1 1
sheet characterizes the resonance Im(E)  unphysical planc - Sheet I
Possible singularities: —O— > Re(E)
2 @3

1. Bound states
2. Anti-bound states

3. Resonances
4. Spurious singularities (wrong model)
33




Poles positions and resonances

Real resonances are located in the Il and 1lIl Riemann sheets
o The poles lie on the unphysical plane since Im(q,)<0 1
o  They lie symmetrically around the real axis of the energy plane EW ~ — (T + i)
o At the boundary between II-lll sheets 2

Cross sections are real and mainly influenced by the nearest pole
O The nearest pole fixes the resonance candidate

Without thresholds: the poles on the two sheets are identical

Close to threshold: shadow poles in two sheets
O A resonance exists if the poles match
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Summary: energy dependent part of the
amplitude

Always use relativistic functions

Use Breit-Wigner functions with
o Mass dependent width
o Centrifugal barrier functions ({ dependence + phase space)

Single channel resonances:
o If far apart: single BW's OK
o If overlapping with the same mass: sum of BW's is OK
o If nearby: use K-matrix, avoid BW's

Resonances decaying to several channels
o Use K-matrix or Q-vector

o Special cases:

s 7r/KK: Flatté function

= nn/KK 1=0, S wave: phenomenological parameterizations exist taking into account the
overlap of f,(400-1200), f,(1300), f,(1500), f,(1700)
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Fitting methods

o Max. likelihood methods
© X° minimization

o Channel likelihood method

36



Free parameters in amplitudes

a(0,4) = ) o |6, 9" At rest amplitude
]
1 2
u(®.¢) =7 Z Zf,{H;{MZ In flight amplitude
MAz | ]

Couplings (real): final to initial state: «, or H’,,,,
Isobar production rates (complex): weight of different isobars in PW w;

. . PC
fi = Z wid) Ay = z Zj 0, OFir(q)
i r

Dynamical parameters: masses, partial and total widths (decay BR's)

37



Once the amplitude is written... now?

Several tens of free parameters need to be estimated

A proper minimization package must be used to adapt the

amplitude to the experimental data
o Log(likelihood) or direct y? evaluation

\ o For each event a real number is obtained
\ m Used as weight for the entry in a Dalitz plot cell or histogram bin
\ m A theoretical (modelled) distribution is prepared, according to a given
\ hypothesis
\ m Events to be weighted: Monte Carlo generated events with the physical cuts

x. (acceptance distorted)
. o Comparison between the experimental plot and the Montecarlo model

‘ through statistical estimators
~ 38
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-log(£) minimization

For each experimental event a global likelihood probability
density is obtained, for any set ® of free parameters
O w = event-by-event intensity (i.e. weight)

= Normalized to a large number of Montecarlo

u;(0)

n
generated events which take into account the apparatus L= ‘ ‘
efficiency and acceptance i=1 f

u(0)dQ

The set ® which minimizes the function is found, then the fit
quality is checked

Advantages:

O Works with any statistics (also few events)

O Uncorrelated to data distribution lineshapes and binning
O Acceptance effects automatically taken into account

O Inclusion of background contribution possible
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v minimization

A y? can be obtained as goodness-of-fit estimator after having
determined the best-fit ® set of parameters, OR a ¥?*(®) function can be

minimized comparing the experimental distributions to the theoretical
ones

Nexp NBG _Nth
Over a Dalitz plot volume: Z Z ( )

\\ cells NeXp + O-NBG + O-Nth

N jj-cell content, obtained weighting events of the acceptance Dalitz

plot with the squared amplitude from the phase-space Monte Carlo
. events

o o2 = NeP. = n.
exp { ij
\ | 0% = ZW; = t%/p;  (acceptance/phase space DP cell content)

A
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Channel likelihood fit | | <

Extension of max likelihood method N
Useful for events with many particles in the final state

Purpose: separation of the data sample in several resonant

contributions on a per-event basis
O Determine the contribution of each channel to the total data sample
O Identify the channel an event belongs to

For each j channel:
O Density function containing the dynamics x angular info, normalized over phase
space: f;
O Weight of event i in the channel j: w;

For all { events:

\ 2wy =1
| = 41




Channel likelihood fit Il

Probability that a i event belongs to
the jt channel:

A new number of events per channel
N’ may be iteratively found solving the
M coupled equations system

Once the solutions are found the w;
N xM numbers are used to weight the
experimental data in the control plots

Wji

_ N
Juips Fi(@dQ

M
Z N;fji
= Juips 11 (@dQ

N
IV]'=szi ]=1,M
i=1

"  Recursive method
" minimization
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Example of channel likelihood fit results

WA76 experiment @CERN:

o Central pp, n*p collisions @ 85 GeV/c
n pp > p(KK)p
m 7t p—>n (K'K)p

o Analysis of momenta:
=YY shows activity over the full
mass range: 6(1720)?
= Y% & YY% consistent with zero

N/40 MeV

10 12 16 16 18
m (K'K") GeV
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Summary: fitting methods |

The amplitude is written according to a given hypothesis for
the configuration of the two-body intermediate states set

A minimization procedure must be used to find the set of
parameters which reproduces at best the shape of the

experimental distributions

o Likelihood methods (binned/unbinned)
m Difficult to compare different best fits obtained in different hypotheses

o x> minimization

\\ "
\




Overall summary

Data con be interpreted resorting to several hypotheses

for the production of intermediate states
O Each hypothesis has its own formulation depending on particle spins,
relative angular momentum and features of the energy dependent part

A best-fit series of parameters must be obtained for each
hypothesis

Best fit solutions must be compared to estimate the best
description of the data

The procedure is long (and boring), and must proceed through
gradual (little) improvements of the amplitude description,
_ always keeping under control the effect on the fit quality

) \\\
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