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Overview
● Dynamical Functions

○ Resonance formation: S-T-K matrices
○ Breit-Wigner, Flatté functions & co.
○ Centrifugal barrier
○ Resonance production: P & Q vectors
○ N/D method

● Fitting methods and practical issues
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The dynamic part of the amplitude

● Breit-Wigner functions widely used in the first analyses AND by High            
Energy Experiments
○ Useful only for one resonance at a time without any interference

■ Single resonance
■ Single decay channel

● Much more complicated situation
○ Resonances have several decay channels
○ Several resonances sharing the same decay channel (interference)
○ Line shapes distortions due to threshold openings and sudden change of available phase

space

● Thorough approach needed
● Simplifications to be applied in a second step 
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T vs S matrix
● Recall: scattering amplitude via partial wave expansion
⇒ T: transition amplitude

● Scattering matrix (unitarity):
○ Its elements express the probability to find a                        final

state starting from a                                  initial state 

𝑓𝑓𝑓𝑓𝑓𝑓(Ω) =
1
𝑞𝑞𝑖𝑖
�
𝐽𝐽

(2𝐽𝐽 + 1)𝑇𝑇𝑓𝑓𝑓𝑓
𝐽𝐽 (𝑠𝑠) 𝐷𝐷𝜆𝜆𝜆𝜆

𝐽𝐽∗(𝜃𝜃,𝜙𝜙, 0)

𝑑𝑑𝜎𝜎𝑓𝑓𝑓𝑓
𝑑𝑑𝑑 =

1
(8𝜋𝜋)2𝑠𝑠

𝑞𝑞𝑓𝑓
𝑞𝑞𝑖𝑖

𝑀𝑀𝑓𝑓𝑓𝑓
2 = 𝑓𝑓𝑓𝑓𝑓𝑓(Ω) 2

𝑺𝑺 = 𝟏𝟏 + 𝟐𝟐𝟐𝟐 𝑻𝑻

⇒ Differential cross section

⟩|𝑓𝑓 = ⟩|𝑐𝑐𝑐𝑐, 𝐽𝐽𝐽𝐽
⟩|𝑖𝑖 = ⟩|𝑎𝑎𝑎𝑎, 𝐽𝐽𝐽𝐽 𝜆𝜆𝑎𝑎𝜆𝜆𝑏𝑏

𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑖𝑖 𝑆𝑆 𝑓𝑓
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K vs S vs T matrix
● T is a n×n matrix representing n incoming and n outgoing

channels
○ from its unitarity properties follows:

■ (𝑻𝑻†)−1 − 𝑻𝑻−1 = 2𝑖𝑖 𝟏𝟏

● K-matrix definition

○ K is a hermitian operator
○ Due to time invariance: K REAL matrix

■ Under threshold it can be continued analytically
■ T and K commute

𝑲𝑲−1 = 𝑇𝑇−1 + 𝑖𝑖 𝟏𝟏

𝑻𝑻 = 𝑲𝑲(𝟏𝟏 − 𝑖𝑖𝑲𝑲)−1 = (𝟏𝟏 − 𝑖𝑖𝑲𝑲)−1𝑲𝑲
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Single channel problem

● T matrix: T = (e2iδ-1)/2i = eiδ sinδ
○ Argand plot: C(0, i/2), r=1/2

● S matrix: S = e2iδ

● K matrix: 
○ K-1 = T-1 – i = ctgδ
○ K = tgδ ⇒ pole for δ = π/2

■ Recall Breit-Wigner function derivation…
● Cross section (S wave): 

𝜎𝜎 =
4𝜋𝜋
𝑞𝑞𝑖𝑖2

sin2 𝛿𝛿
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2 channels problem (i.e. KK + ππ)

● K is real, K12 = K21

● T matrix:

𝑲𝑲 = 𝐾𝐾11 𝐾𝐾12
𝐾𝐾21 𝐾𝐾22

𝑻𝑻 =
1

1 − 𝐷𝐷 − 𝑖𝑖(𝐾𝐾11 + 𝐾𝐾22)
𝐾𝐾11 − 𝐷𝐷 𝐾𝐾12
𝐾𝐾21 𝐾𝐾22 − 𝐷𝐷

𝐷𝐷 = 𝐾𝐾11𝐾𝐾22 − 𝐾𝐾122
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Relativistic extension
● T is not relativistically invariant

○ One must insert the phase space-matrix elements of the initial and 
final state

● ρ: phase-space matrix, diagonal
○ Can become complex under threshold

● Covariant description of T, S and K:

𝜌𝜌 =

2𝑞𝑞1
𝑚𝑚

0

0
2𝑞𝑞2
𝑚𝑚

𝑻𝑻 = 𝝆𝝆
1
2 �𝑻𝑻 𝝆𝝆

1
2 𝑺𝑺 = 𝟏𝟏 + 2𝑖𝑖 𝝆𝝆

1
2 �𝑻𝑻 𝝆𝝆

1
2

𝑲𝑲 = 𝝆𝝆
1
2 �𝑲𝑲 𝝆𝝆

1
2 �𝑲𝑲−1 = �𝑻𝑻−1 + 𝑖𝑖𝝆𝝆
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Let’s go back to Breit-Wigner functions…

● Single resonance with single decay channel
○ simplest dynamical function

● Several derivations possible
1. From phase variation

■ Resonance: δ = π/2
2. From the decay of unstable states
3. From field theory
4. From K-matrix
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Breit Wigner pdf from wave functions and         
particle decays

● The wave function for a non-stationary state of frequency ωR = ER/ℏ
and lifetime τ=ℏ/Γ can be written as

● Its Fourier transform gives, as a function of ω:

● Since σel ~ Ψ*Ψ: 

𝜓𝜓(𝑡𝑡) = Ψ0𝑒𝑒−𝑖𝑖𝜔𝜔𝑅𝑅𝑡𝑡𝑒𝑒−𝑖𝑖
𝑡𝑡
2𝜏𝜏

Ψ(𝜔𝜔) =
1
2𝜋𝜋

�
−∞

+∞

𝜓𝜓(𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 =
𝜅𝜅

(𝐸𝐸𝑅𝑅 − 𝐸𝐸) − 𝑖𝑖(Γ/2)

Ψ(𝐸𝐸) =
Γ/2

(𝐸𝐸𝑅𝑅 − 𝐸𝐸) − 𝑖𝑖(Γ/2)
𝜎𝜎2𝑒𝑒𝑒𝑒 =

4𝜋𝜋
𝑘𝑘

(2𝑙𝑙 + 1)
Γ2/4

(𝐸𝐸𝑅𝑅 − 𝐸𝐸)2 − 𝑖𝑖(Γ2/4)
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T-matrix & field theory: resonances
● In field theory a resonance is described by a propagator

● If a self-energy term is present

● Every loop involves a complex coupling c
● If the coupling is small, the expansion converges like a geometric series

𝑇𝑇 = 𝑉𝑉12
1

𝐸𝐸0 − 𝐸𝐸
𝑉𝑉12

𝑇𝑇 = 𝑉𝑉12
1

𝐸𝐸0 − 𝐸𝐸
𝑐𝑐

1
𝐸𝐸0 − 𝐸𝐸

𝑉𝑉12 = 𝑐𝑐
𝑉𝑉12𝑐𝑐𝑉𝑉12

(𝐸𝐸0 − 𝐸𝐸)2
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T-matrix perturbative treatment

defining the “dressed” energy 

ER = E0- ℜe(c)

++=

+ ...

𝑇𝑇 = 𝑉𝑉12𝑉𝑉12
𝐸𝐸0−𝐸𝐸

1 + 𝑐𝑐
𝐸𝐸0−𝐸𝐸

+ 𝑐𝑐2

(𝐸𝐸0−𝐸𝐸)2
+ ⋯ = 𝑉𝑉12𝑉𝑉12

𝐸𝐸0−𝐸𝐸
1

1− 𝑐𝑐
𝐸𝐸0−𝐸𝐸

= 𝑉𝑉12𝑉𝑉12
𝐸𝐸0 − 𝐸𝐸− 𝑐𝑐

𝑇𝑇 =
𝑉𝑉12𝑉𝑉12

𝐸𝐸𝑅𝑅 − 𝐸𝐸 − 𝑖𝑖𝑖𝑖𝑖(𝑐𝑐)
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Relativistic Breit-Wigner function

● Formulation to be used in any meson spectroscopy experiment
● From the optical theorem:

● k(s) is any real function
● T-1 has a peak at k(s)=0
● Simplest covariant form for k(s): (sR-s)/γ

ℑ𝑚𝑚(𝑇𝑇(𝑠𝑠, 0)) =
𝑞𝑞
4𝜋𝜋

𝑠𝑠
2
𝜎𝜎𝑇𝑇 𝑇𝑇−1(𝑠𝑠) =

𝑞𝑞
𝑠𝑠

(cot 𝛿𝛿 − 𝑖𝑖) = 𝑘𝑘(𝑠𝑠) − 𝑖𝑖
2𝑞𝑞
𝑠𝑠

𝑇𝑇 𝑠𝑠 =
𝛾𝛾

𝑠𝑠𝑅𝑅 − 𝑠𝑠 − 𝑖𝑖 2𝑞𝑞𝑞𝑞
𝑠𝑠

⇒
Γ

𝑚𝑚𝑅𝑅
2 − 𝑚𝑚2 − 𝑖𝑖𝑖𝑖𝑚𝑚𝑅𝑅Γ

13



Non-relativistic vs relativistic Breit-Wigner

● Argand plot & phase motion
○ (almost) equal: non-relativistic vs relativistic BW

● Intensity
○ Narrower line-shape in the relativistic case

Argand Plot Phase δ Intensity I=ΨΨ*
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Resonances in K-matrix formalism

● Formation of resonances: sum of poles of the K-matrix
● If the amplitude is dominated by resonance formation the K-matrix

elements (Lorentz-invariant) may be written as

● The gi’s are residual functions, real above the ith channel threshold and          
proportional to the ith channel partial width

�𝐾𝐾𝑖𝑖𝑖𝑖 = �
𝛼𝛼

𝑔𝑔𝛼𝛼𝛼𝛼∗ (𝑚𝑚)𝑔𝑔𝛼𝛼𝛼𝛼(𝑚𝑚)
(𝑚𝑚𝛼𝛼

2 − 𝑚𝑚2) 𝜌𝜌𝑖𝑖𝜌𝜌𝑗𝑗
+ 𝑐̂𝑐𝑖𝑖𝑖𝑖

𝑔𝑔𝛼𝛼𝛼𝛼2 (𝑚𝑚) = 𝑚𝑚𝛼𝛼Γ𝛼𝛼𝛼𝛼(𝑚𝑚) Γ𝛼𝛼(𝑚𝑚) = �
𝑖𝑖

Γ𝛼𝛼𝛼𝛼(𝑚𝑚)

The total width of a resonance is a sum of partial widths 
over different decay channels 15



Partial widths & centrifugal barriers

● The widths of the resonances, in a covariant formulation of the 
decay amplitudes, are mass-dependent and proportional to q2l+1

○ centrifugal barrier factor
○ Taking out the phase space factor: Γ ~ q2l

■ The lifetime is related to the centrifugal barrier
○ Valid only at low energies and close to thresholds

○ Motivation: suppression of the cross-sections in L≠0 waves when the 
impact parameter b is large (or the break-up momentum is small)
■ Damping factors needed

● Blatt-Weisskopf formulation
𝑏𝑏 =

𝐿𝐿(𝐿𝐿 + 1)
𝑞𝑞
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Blatt-Weisskopf centrifugal barrier factors

● Derived from the solution of the radial differential equation
○ Proportional to spherical Hankel functions

● For ℓ=0 up to 3: with r ~ 1 fm 𝐵𝐵𝑙𝑙(𝑞𝑞, 𝑞𝑞𝑅𝑅) =
𝐹𝐹𝑙𝑙(𝑞𝑞)
𝐹𝐹𝑙𝑙(𝑞𝑞𝑅𝑅)

𝐹𝐹0(𝑞𝑞) = 1

𝐹𝐹1(𝑞𝑞) =
2(𝑞𝑞𝑞𝑞)2

𝑞𝑞𝑞𝑞 + 1

𝐹𝐹2(𝑞𝑞) =
13(𝑞𝑞𝑞𝑞)4

((𝑞𝑞𝑞𝑞)2 − 3)2 + 9(𝑞𝑞𝑞𝑞)2

𝑇𝑇𝑙𝑙(𝑠𝑠) =
𝐵𝐵𝑙𝑙2(𝑞𝑞)Γ

𝑚𝑚𝑅𝑅
2 − 𝑚𝑚2 − 𝑖𝑖𝑖𝑖𝐵𝐵𝑙𝑙2(𝑞𝑞)𝑚𝑚0Γ

Relativistic Breit-Wigner
amplitude

with damping factors
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Resonances coupled to many channels
● The partial widths are unknown and can be expressed through                              

complex parameters to be adjusted by the fits
○ The residual functions read as

● The K-matrix widths do not have to be identical to the observed widths nor to 
T-matrix poles widths
○ Only if the masses of the decay particles are much smaller than the mass of the 

resonance: Γ𝛼𝛼 𝑚𝑚𝛼𝛼 ≈ Γ𝛼𝛼0

𝑔𝑔𝛼𝛼𝛼𝛼(𝑚𝑚) = 𝛾𝛾𝛼𝛼𝛼𝛼 𝑚𝑚𝛼𝛼Γ𝛼𝛼0 𝐵𝐵𝛼𝛼𝛼𝛼𝑙𝑙 (𝑞𝑞, 𝑞𝑞𝛼𝛼) 𝜌𝜌𝑖𝑖
Fit parameters

(normalized to 1)
Centrifugal barrier 

function

Phase space

�
𝑖𝑖

𝛾𝛾𝛼𝛼𝛼𝛼2 = 1

�𝐾𝐾𝑖𝑖𝑖𝑖(𝑚𝑚) = �
𝛼𝛼

𝛾𝛾𝛼𝛼𝛼𝛼𝛾𝛾𝛼𝛼𝛼𝛼𝑚𝑚𝛼𝛼Γ𝛼𝛼0 𝐵𝐵𝛼𝛼𝛼𝛼𝑙𝑙 (𝑞𝑞, 𝑞𝑞𝛼𝛼) 𝐵𝐵𝛼𝛼𝛼𝛼𝑙𝑙 (𝑞𝑞, 𝑞𝑞𝛼𝛼)
𝑚𝑚𝛼𝛼
2 − 𝑚𝑚2
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Example 1: one resonance, one decay channel, 
spin 1 (e.g., a ρ)

● K matrix: 

● Mass-dependent width:

● T matrix:

𝐾𝐾 =
𝑚𝑚0Γ(𝑚𝑚)
𝑚𝑚0
2 − 𝑚𝑚2 = tan 𝛿𝛿

Γ(𝑚𝑚) = Γ0𝜌𝜌 𝐵𝐵1(𝑞𝑞, 𝑞𝑞0) 2 = Γ0𝑜𝑜𝑜𝑜𝑜𝑜
𝑚𝑚0
𝑚𝑚

𝑞𝑞
𝑞𝑞0

𝟑𝟑

𝑇𝑇 = 𝑒𝑒𝑖𝑖𝑖𝑖 sin 𝛿𝛿 =
𝑚𝑚0Γ0𝑜𝑜𝑜𝑜𝑜𝑜

𝑚𝑚0
2 − 𝑚𝑚2 − 𝑖𝑖𝑚𝑚0Γ(𝑚𝑚)

𝑞𝑞
𝑞𝑞0

2 𝑚𝑚0
𝑚𝑚

𝑞𝑞
𝑞𝑞0

2-body phase space

P-wave factor 19



Example II: two resonances (a,b), one decay 
channel, spin zero

● (2 x 1) K-matrix:

● If ma and mb are far apart relative to their width (so they do not 
overlap), the K-matrix is dominated by one of them depending on 
the m value
○ In this case the transition amplitude can be written as a sum (but this is an 

approximation because unitarity is violated!)

𝐾𝐾 =
𝑚𝑚𝑎𝑎Γ𝑎𝑎(𝑚𝑚)
𝑚𝑚𝑎𝑎
2 − 𝑚𝑚2 +

𝑚𝑚𝑏𝑏Γ𝑏𝑏(𝑚𝑚)
𝑚𝑚𝑏𝑏
2 − 𝑚𝑚2

𝑇𝑇 ≅
𝑚𝑚𝑎𝑎Γ𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜

𝑚𝑚𝑎𝑎
2 − 𝑚𝑚2 − 𝑖𝑖𝑚𝑚𝑎𝑎Γ𝑎𝑎(𝑚𝑚)

𝑚𝑚𝑎𝑎

𝑚𝑚
𝑞𝑞
𝑞𝑞𝑎𝑎

+
𝑚𝑚𝑏𝑏Γ𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜

𝑚𝑚𝑏𝑏
2 − 𝑚𝑚2 − 𝑖𝑖𝑚𝑚𝑏𝑏Γ𝑏𝑏(𝑚𝑚)

𝑚𝑚𝑏𝑏

𝑚𝑚
𝑞𝑞
𝑞𝑞𝑏𝑏
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Sum of resonances: same mass
● If two resonances have the same mass (and in this case only!) one                     

can sum their widths: ma = mb = m0

● Remember: the simple sum of amplitudes violates unitarity

𝑇𝑇 ≅
𝑚𝑚0 Γ𝑎𝑎(𝑚𝑚) + Γ𝑏𝑏(𝑚𝑚)

𝑚𝑚0
2 − 𝑚𝑚2 − 𝑖𝑖𝑚𝑚0 Γ𝑎𝑎(𝑚𝑚) + Γ𝑏𝑏(𝑚𝑚)

2 BW
K-Matrix

21



Sum of resonances with nearby masses
● Example: two nearby resonances decaying into ππ, with the same  

spin 
○ f2(1275): ma = 1275 MeV/c2, Γa = 185 MeV
○ f2(1565): mb = 1565 MeV/c2, Γb = 150 MeV

● The sum of Breit Wigner amplitudes violates unitarity

2 Breit Wigner’s
K-matrix

Argand plot

Phase shift Intensity

Inelasticity

22

● Phase shift: move backwards
● Intensity: exceeds unity



Example III: one resonance, two decay channels: 
coupled channel analysis

● (1x2) K-matrix
● Practical case: f0(1500) →ππ, KK, Γ=100 MeV

○ Test of different couplings:
■ ππ dominated resonance (Γππ= 80 MeV)
■ KK dominated resonance  (Γππ= 20 MeV)

Intensity I=ΨΨ*Phase δArgand Plot

am
plitude 

If the KK coupling is large the measurement of the ππ phase shift is not 
enough to claim for the existence of a resonance 23



Example IV: one resonance, two decay channels, 
one close to threshold

● (2x2) K-matrix

● Practical case: a0(980) →ηπ || a0(980) → KK with J=0
○ a0(980) close to KK threshold

Flatté formula

�𝑇𝑇 =
𝑚𝑚0Γ0

𝑚𝑚0
2 − 𝑚𝑚2 − 𝑖𝑖𝑚𝑚0Γ0(𝜌𝜌1𝛾𝛾12 + 𝜌𝜌2𝛾𝛾22)

𝛾𝛾12 𝛾𝛾1𝛾𝛾2
𝛾𝛾1𝛾𝛾2 𝛾𝛾22

�𝐾𝐾 =

𝛾𝛾12𝑚𝑚0Γ0
𝑚𝑚0
2 − 𝑚𝑚2

𝛾𝛾1𝛾𝛾2𝑚𝑚0Γ0
𝑚𝑚0
2 − 𝑚𝑚2

𝛾𝛾1𝛾𝛾2𝑚𝑚0Γ0
𝑚𝑚0
2 − 𝑚𝑚2

𝛾𝛾22𝑚𝑚0Γ0
𝑚𝑚0
2 − 𝑚𝑚2
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Flatté vs Breit-Wigner amplitudes

● The Breit-Wigner parameterization
follows the unitarity circle

● Flatté: 
○ ηπ channel: 

■ Inelasticity: drop at the KK 
threshold

■ Line-shape: OK

○ KK channel:
■ Inelasticity: smaller circle
■ Line shape: dramatic

distortion

BW πη
Flatte πη
Flatte KK

25



Production of resonances: P-vector

● Extension of K-matrix formalism to more complex reactions 
(resonances not formed in s-channel)
○ Effect of Final State Interactions

● Assumptions:
○ The two-body system in the final state is isolated
○ The two particles do not interact simultaneously with the rest of the 

particles in the final state

● The production of a resonance is described by the P-vector

𝑻𝑻 = (𝟏𝟏 − 𝑖𝑖𝑲𝑲)−1𝑲𝑲 𝑭𝑭 = (𝟏𝟏 − 𝑖𝑖𝑲𝑲)−1𝑷𝑷 = 𝑻𝑻𝑲𝑲−1𝑷𝑷

26



P-vector properties
● P contains the same set of poles of K and both are built the same way

● A linear term can be introduced to account for non resonant contributions to 
the final state

● For a single decay channel and a single resonance:

○ The final state interaction brings in a factor eiδ

○ P is a real function

27

Constant term or 
polynomial

�𝐹𝐹 = 𝑒𝑒𝑖𝑖𝑖𝑖 cos 𝛿𝛿 �𝑃𝑃

Information on the
resonance
production

�𝑃𝑃𝑖𝑖 = �
𝑅𝑅

𝛽𝛽𝑅𝑅0𝑔𝑔𝑅𝑅𝑅𝑅(𝑚𝑚)
(𝑚𝑚𝑅𝑅

2 −𝑚𝑚2) 𝜌𝜌𝑖𝑖
+ 𝑑𝑑𝑖𝑖

Information on 
resonance

width/decay



Production of resonances: Q-vector

● The P-vector has the same singularities (poles, “left hand cuts” due to 
threshold opening) of K-matrix, depending on the reaction

● In a limited energy range P can be considered as a constant vector Q
○ Q depends only on s=m2

○ Q has not threshold singularities
○ Q does not contain poles

● P or Q: two equivalent approximations
○ P: (1-iK) propagator × a constant (to be determined by the fit) 
○ Q: T × a constant (to be determined by the fit) 

�𝑄𝑄 = �𝐾𝐾−1𝑃𝑃�𝐹𝐹 = �𝑇𝑇 �𝑄𝑄
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N/D approach
● Derived from dispersion relations

○ Maximum analiticity
○ Unitarity

● The amplitude Tℓmay be expressed by dispersion relations derived from the 
optical theorem ⇒ integral equations

● Tℓ can always be expressed by a ratio of functions, correlated by a solvable
system of integral equations

𝑇𝑇ℓ 𝑠𝑠 =
𝑁𝑁ℓ(𝑠𝑠)
𝐷𝐷ℓ(𝑠𝑠)

Contains only right-hand singularities

Contains only left-hand singularities
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Amplitude singularities vs resonances

● Poles: zeros of propagators
○ K-matrix and T-matrix poles are located in different positions

■ They are similar if:
● Resonances are very far apart
● The coupling to non-dominant channels is very small
● They are far from thresholds

■ If these conditions do not hold:
● Interference mechanisms move the pole positions 

● Cuts: opening of thresholds
○ s channel: right hand cut
○ t, u channels: left hand cut
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Cuts and Riemann sheets: Right Hand Cuts

● ρ(m) is a square root: ρ(m) = √(2q/m)
○ Below threshold (q=0) ρ(m) gets complex

■ there are 4 solutions, every pair of roots lie π rad apart
○ For each threshold a pair of Riemann sheets Im(E) vs Re(E) opens (each

for one of the roots)
○ The cut between sheets is taken (by convention) on the real axis and 

starts at the channel threshold
○ s channel cut: right hand cut (RHC)

31



Cuts and Riemann sheets: Left Hand Cuts
● Singularities in t- and u- channels:

○ Usually they appear below threshold
○ Not taken into account in K-matrix
○ They can imitate resonances and influence the amplitude in the physical

region
○ t-, u- channel cuts: left hand cuts (LHC)

32u t

Left-hand
cuts



Resonances? Properties of T poles in the complex
E plane

● T matrix pole: zero of the complex
denominator D

○ D(E + i Γ/2) = 0
○ Mass: real part of the pole
○ Width: 2x imaginary part

● The position of the pole in each Riemann
sheet characterizes the resonance

33

● Possible singularities:
1. Bound states
2. Anti-bound states
3. Resonances
4. Spurious singularities (wrong model)



Poles positions and resonances
● Real resonances are located in the II and III Riemann sheets

○ The poles lie on the unphysical plane since Im(qR)<0
○ They lie symmetrically around the real axis of the energy plane
○ At the boundary between II-III sheets

● Cross sections are real and mainly influenced by the nearest pole
○ The nearest pole fixes the resonance candidate

● Without thresholds: the poles on the two sheets are identical

● Close to threshold: shadow poles in two sheets
○ A resonance exists if the poles match 

Γ𝑅𝑅𝐵𝐵𝐵𝐵 ≈
1
2
Γ𝑅𝑅𝐼𝐼𝐼𝐼 + Γ𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼
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Summary: energy dependent part of the 
amplitude
● Always use relativistic functions
● Use Breit-Wigner functions with

○ Mass dependent width
○ Centrifugal barrier functions (ℓ dependence + phase space)

● Single channel resonances:
○ If far apart: single BW’s OK
○ If overlapping with the same mass: sum of BW’s is OK
○ If nearby: use K-matrix, avoid BW’s

● Resonances decaying to several channels
○ Use K-matrix or Q-vector
○ Special cases: 

■ ηπ/KK : Flatté function
■ ππ/KK I=0, S wave: phenomenological parameterizations exist taking into account the 

overlap of f0(400-1200), f0(1300), f0(1500), f0(1700)
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Fitting methods

36

● Max. likelihood methods
● χ2 minimization
● Channel likelihood method



Free parameters in amplitudes

● Couplings (real): final to initial state:  αJ or HJ
λ1λ2

● Isobar production rates (complex): weight of different isobars in PW wi

● Dynamical parameters: masses, partial and total widths (decay BR’s)

𝑎𝑎(𝜃𝜃,𝜙𝜙) = �
𝐽𝐽

𝛼𝛼𝐽𝐽 𝑓𝑓𝐽𝐽(𝜃𝜃,𝜙𝜙) 2

𝑢𝑢(𝜃𝜃,𝜙𝜙) =
1
4 �
𝜆𝜆1𝜆𝜆2

�
𝐽𝐽

𝑓𝑓𝜆𝜆
𝐽𝐽𝐻𝐻𝜆𝜆1𝜆𝜆2

𝐽𝐽
2

At rest amplitude

In flight amplitude

𝑓𝑓𝐽𝐽 = �
𝑖𝑖

𝑤𝑤𝑖𝑖𝐴𝐴𝐽𝐽𝑖𝑖 𝐴𝐴𝐽𝐽𝑖𝑖 = �
𝑟𝑟

𝑍𝑍𝑖𝑖𝑖𝑖
𝐽𝐽𝑃𝑃𝑃𝑃 (𝑝𝑝, 𝑞𝑞)𝐹𝐹𝑖𝑖𝑖𝑖(𝑞𝑞)
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Once the amplitude is written… now?

● Several tens of free parameters need to be estimated

● A proper minimization package must be used to adapt the 
amplitude to the experimental data
○ Log(likelihood) or direct χ2 evaluation
○ For each event a real number is obtained

■ Used as weight for the entry in a Dalitz plot cell or histogram bin
■ A theoretical (modelled) distribution is prepared, according to a given

hypothesis
■ Events to be weighted: Monte Carlo generated events with the physical cuts

(acceptance distorted)
○ Comparison between the experimental plot and the Montecarlo model 

through statistical estimators
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-log(L ) minimization
● For each experimental event a global likelihood probability

density is obtained, for any set Θ of free parameters
○ μi = event-by-event intensity (i.e. weight)

■ Normalized to a large number of Montecarlo                                    
generated events which take into account the apparatus
efficiency and acceptance

● The set Θ which minimizes the function is found, then the fit
quality is checked

ℒ = �
𝑖𝑖=1

𝑛𝑛
𝜇𝜇𝑖𝑖(Θ)

∫𝜇𝜇(Θ)𝑑𝑑𝑑
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● Advantages:
○ Works with any statistics (also few events)
○ Uncorrelated to data distribution lineshapes and binning
○ Acceptance effects automatically taken into account
○ Inclusion of background contribution possible



χ2 minimization
● A χ2 can be obtained as goodness-of-fit estimator after having

determined the best-fit Θ set of parameters, OR a χ2(Θ) function can be 
minimized comparing the experimental distributions to the theoretical
ones

● Over a Dalitz plot volume:

● Nth
j: ij-cell content, obtained weighting events of the acceptance Dalitz

plot with the squared amplitude from the phase-space Monte Carlo 
events
○ σ2

exp = Nexp
i = nij

○ σ2
th = Σwij = t2

ij/pij (acceptance/phase space DP cell content) 

( )∑ ++
−−

=
cells NNN

th
i

BG
ii

th
i

BG
ii

NNN
222

2exp
2

exp σσσ
χ
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Channel likelihood fit I
● Extension of max likelihood method
● Useful for events with many particles in the final state
● Purpose: separation of the data sample in several resonant

contributions on a per-event basis
○ Determine the contribution of each channel to the total data sample
○ Identify the channel an event belongs to

● For each j channel:
○ Density function containing the dynamics × angular info, normalized over phase

space: fj○ Weight of event i in the channel j: wij

● For all i events: 

�
𝑗𝑗=1

𝑀𝑀

𝑤𝑤𝑖𝑖𝑖𝑖 = 1
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Channel likelihood fit II

● Probability that a ith event belongs to 
the jth channel:

● A new number of events per channel
N’ may be iteratively found solving the 
M coupled equations system

● Once the solutions are found the wij
N×M numbers are used to weight the 
experimental data in the control plots

𝑤𝑤𝑗𝑗𝑗𝑗 =
𝑁𝑁𝑗𝑗𝑓𝑓𝑗𝑗𝑗𝑗

∫𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓𝑗𝑗(Ω)𝑑𝑑𝑑
�
𝑗𝑗=1

𝑀𝑀
𝑁𝑁𝑗𝑗𝑓𝑓𝑗𝑗𝑗𝑗

∫𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓𝑗𝑗(Ω)𝑑𝑑𝑑

−1

𝑁𝑁𝑗𝑗 = �
𝑖𝑖=1

𝑁𝑁

𝑤𝑤𝑗𝑗𝑗𝑗 𝑗𝑗 = 1, …𝑀𝑀

 Recursive method
 minimization
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Example of channel likelihood fit results

● WA76 experiment @CERN: 
○ Central pp, π+p collisions @ 85 GeV/c

■ pp → p(K+K-)p
■ π+p → π+ (K+K-)p

○ Analysis of momenta:
■ Y0

2 shows activity over the full 
mass range: θ(1720)?

■ Y0
5 & Y0

6 consistent with zero
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Summary: fitting methods

● The amplitude is written according to a given hypothesis for 
the configuration of the two-body intermediate states set

● A minimization procedure must be used to find the set of 
parameters which reproduces at best the shape of the 
experimental distributions
○ Likelihood methods (binned/unbinned)

■ Difficult to compare different best fits obtained in different hypotheses
○ χ2  minimization
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Overall summary
● Data con be interpreted resorting to several hypotheses

for the production of intermediate states
○ Each hypothesis has its own formulation depending on particle spins, 

relative angular momentum and features of the energy dependent part

● A best-fit series of parameters must be obtained for each
hypothesis

● Best fit solutions must be compared to estimate the best 
description of the data

● The procedure is long (and boring), and must proceed through
gradual (little) improvements of the amplitude description, 
always keeping under control the effect on the fit quality
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