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Overview

e Partial wave amplitudes
O Isobar model and intermediate states
o Partial wave decomposition
O Initial state descriptions
O Atrest vs in-flight (energy dependent)
interaction amplitudes

e The angular dependent part of the
amplitude: spin formalisms



The isobar model (Watson)

® Assumption: the overall reaction proceeds

via intermediate two-body processes
The many-body system is built through a tree of
subsequent two-body decays
The two-body systems have the same behaviour
in each reaction step
Different initial states may interfere

Ingredients:
Two-body spin algebra
Two-body scattering formalism

Isobar

Not suitable for rescattering processes
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Particles in intermediate states can mix
and/or interfere...

e Many intermediate states can contribute to the same final state

Isoscalar mixing
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Interferences and spin effects determine particular patterns in the
scattering amplitudes



On the road to write an amplitude: step 1

e For each node of the decay tree an amplitude can be written as a

function of:
Isospin: total and third component
Spin J of the mother particle
Angles in 3D space: Q = (6,¢)
Relative angular momentum { between the daughter pair
and the mother particle
Energy (s) of the decaying mother

f (I’ 13 ’ ]’ f’ S, Q) — I{ (1, 13 ) ij (S) R]f (Q) Partial wave amplitude

The full amplitude is the sum over all the nodes in the final state

Other observables are summed over



The isospin dependence

® Intermediate states with identical particles must be weighted by
proper Clebsch-Gordan coefficients stemming from the isospin
composition

® Example: pp — pm
Initial states: pp in 1Sy: 16=1-, 3S,: 16=0* (I;=0)

Final states: p°n®, p*n*, pFnt — n*n a0
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Destructive interference in 3S,
1S, —pn? forbidden
Alf)isospin combinations must be summed over 6




Wave-optical approach of hadron scattering: partial wave
amplitudes

® Procedure to solve the Schrodinger equation in a scattering process

® The incident wave can be expanded in terms of Legendre polynomials P, and
a radial function U,

i) =W = ) Up(r)Pe(cos 6)
£=0

® The scattered wave function can also be factorized in a radial x angular part

product
The radial part U, is parameterized in terms of phases & and inelasticities 7,

- Plane wave
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The Breit-Wigner resonance formula

® Spin { Resonance: when the elastic scattering amplitude (n,=1) reaches
its maximum
S=n/2=T= e¥sind =1/(cotd — i)
coté =~ —(E — ER) %
If |[(E — Eg)| = ' K Ep the resonance is symmetric
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T matrix features

_ npexp(2idy) — 1

T, >

: 1 4Im(T)

® The T-matrix must be unitary (the
probability of a reaction must not exceed
unity) 1 |
. . . \ 2 o n/z //}

® Visualized via the Argand plot: ImT, vs ReT, D 28\

\‘\\ /’I=\IJ\|]>X<
o Ifn <1 Re(T) ¢

&, varies from 0 to /2

If &, = /2 : T, is purely imaginary and gets its -II Resonance in { wave
maximum value



Summing up PWAs: coherent vs incoherent
sum

® Interaction at rest:

No interference among terms with different J°¢
Only possible to measure the orbital angular momentum { of the initial state

) a;: amplitude weigh
complex number
F] (m' 0' ¢) | to be set by the fit

A(m,0,¢) = Za]
J

100

Scattering in flight:

No well defined initial state (only a mixture)
Relative angular momentum proportional to beam energy 10
Many waves interfere with each other

Complex problem at high energy

= In pp annihilations (rule of thumb): £ = p_,,.,/200 MeV/c

o5 10 1.5 20 25 3.0

pLGev/c110



How to write in-flight amplitudes

® Helicity formalism: helicities do not interfere

® Two transition amplitudes:
T,: production matrix of a J°¢ state in flight
T,4: decay matrix of a mother state

® Total transition amplitude for a reaction

a(py, 51, A1) + b(py, 55, 1,) = JP¢ > final state

fiaia = ) (GTalIMYIM|T [p1p2202,)
™

— _/
~

H*3.2,0"ua(0,6,0) (=1, 1)

Ref. system: reaction rest frame & z axis along the projectile particle direction:

D;ILVI(O,O,O) = 5;{” (IM|TS |p1paridz) = H*){laz‘sMA
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In-flight amplitudes I

® If the initial state is composed by a fermion pair (s;=s,="2 and A,, A,= £'2) one has
only the A = +1, 0 components, i.e.

(+1 =
A=l —-2=<50 HY, H'_
-1 HZ,

Of the many [JM) states produced in-flight, only the M=0,+1 projections contribute to the
total amplitude

Since the helicity (as the spin) is a measurable quantity, it does not interfere so the

PWA's have to be summed incoherently
Average over the initial state helicities: V4
Sum over the final state helicities

Further symmetries (parity, CP, etc) can be applied to simplify

12



Total in-flight amplitude

1 2 1
u(6, ¢) =12|F/11,12| ZZZ
A7y

A1z

2

T f
z fi Hy 2,
J

f! =1/D],0,0,0) =T/

e unknown parameters: helicity couplings

e selection rules help to reduce their number:
s+p waves in NN annihilation: 24x H’,, ,, couplings
4x6 states (lowest): 'S, 3S,, 'P,, 3P,, 3P,, 3P,

13



Selection rules for helicity couplings

e Parity conservation:
HJ-M,-xz = P(-1)/ Hjm,xz
H,, = P(-T/H
H, = P(-1)’H

e From Clebsch-Gordan properties: since

H'l, = Z / s C(LOSA Y5121 5 — AolSD)ars

some couplings are zero, depending on L and S values
If L+S-7T =o0odd:H,, =H_=0
If Jor S =0 (orboth):H,_=H_, =0

14



Helicity couplings in fermion-antifermion initial

states
AL JF\H, /H_(J;)) |H.,/H._(J,)

1S, 0 OK 0
3, T- oK oK
P, T+ OK

3p, o+ OK

3p, 1+ 0 OK
3p, 2 OK OK
D, 2 OK 0
3D, T- OK oK
3D, 2 0 OK
3D, 3* OK oK

'Se TP, and 3P, never interfere with 3P,

To write the total amplitude one has to separate initial
states with ++/-- (J;) and +-/-+ (J,) non-zero couplings

Up to P wave:

2
u(f,¢) = +

0‘]‘ - ..0‘
Zﬁ++fl.(2
Ji Temes® 1

!2
zH“]‘—f}v_ll +
J2 |

+

......

ZP@—)JHLf,_l
J2

2
+

|2

H,., and H, _ are free complex parameters in the fit




Summary: Partial Waves decomposition

1. Estimate the number of partial waves you have to insert in the amplitude
(depending on energy)

/. Consider the type of process (and choose the most proper reference system)
At rest interaction
Coherent sum on JPC states

In-flight interaction
Incoherent sum on helicities

3. Define the quantum numbers of every partial wave of the initial state and how they
match with final state 2-body systems

. Go on building each partial wave amplitude with spins and energy dependent part
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Three body decays of resonances

Spin I=
e Extension of DP features i ’

I=

2

-
Q.
L]
w

two observables only needed to

describe the decay

Analyzers: "
Normal to the decay plane ]

Break-up momentum of a pair in the
resonance c.m.s.

DP description useful if the decay S

particles have the same mass

r

Lines and spots: region of 2t

depletion of DP density

Qalalalalax
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e REEEE

Q9|
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Selecting the ® meson: use of the A parameter

method

Statistical selection of the events most
likely coming from a ® decay

N CETN
a(m? = > u’)?

® events: A distribution proportional to A
Background events: flat A distribution
Signal obtained by subtracting the A
distributions in sides bins on both o sides,
within a given interval

® events populate the center
of the Dalitz plot
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Spin-Angular part of the
amplitude: Spin Formalism

e Zemach formalism
e Helicity & canonical formalisms

e Moments analysis

19



Spin formalisms

e Several equivalent descriptions:

Tensor formalisms

Simple and fast for small L and S
Non relativistic (Zemach)
Covariant form (Rarita-Schwinger)

Spin-projection formalisms
Quantization axis chosen + proper rotations
Efficient also for large L and S
Helicity formalism (good for half-integer spins)
Transversity formalism
Canonical (orbital) formalism

20




Once a formalism is chosen...
Definition of a single particle state of given spin S

Definition of a two-particle state in its center-of-mass system
and of the relative angular momentum L between particles

Transformation to states of given total angular momentum J

Applﬁ/ symmetry conservation and kinematic constraints to the
amplitudes

21



Tensor formalism: non-relativistic Zemach
tensors

e Zemach (non-covariant) treatment:
Every angular momentum L is described by a symmetric and traceless
tensor of rank L in 3-D phase space
Written in the rest frame of every di-particle frame, without any boost

to a general reference frame
L=0 = A0=1
L = 7 = A7i = ql

Coupling of spins and orbital angular momenta:
Tensor algebra and contractions

These amplitudes are not Lorentz invariant

22



How to build covariant tensors

‘‘‘‘‘

JP _>.3P+ c Velocity of the R resonance of mass m? = (a+b)>:
oo u, = (a, +b,)/m
jP: —>a+b (u? = 1: time-like vector)

® A spin rank-1 tensor has no time component in the resonant rest frame:

it only represents the behaviour of a particle at rest under rotations
S,: space like vector — S u¥ =0

® Spin-1 covariant tensor: §, = q,, — (qu)u,
q, = a, - b, break-up momentum (in R = a+b cms)
S norma is negative: $2 = g% — (qu)? = - |gg|?

Spin-2 covariant tensor: T,,, = §,S, - 1/3 §%(g,,,, — u,u,)

“qiceless and T2> 0
23



Properties of covariant tensors

® General rule: orthogonalization of the 4-velocity and the spin or the

angular momentum of the particle
Tensor contraction
In the JP rest frame:
q,=c¢,-(a+b), break-up momentum c
u,=(1,0) cms velocity

® Spins and orbital momentum have the same representation

For a particle of spin s: rank-s tensor

(p2+m2) ¢u1 H2...us =0
With the following symmetry, tracelessness and orthogonality properties:
O . . =W
el T
glli#j @-HeHe =0
pﬂi(p /T R—

24



Combination of covariant tensors

Tensors are composed following the quantum-mechanical
rules of angular momentum coupling:
h®j>=J = il <J < ji+)2

1@1=0 S=AB
101=1 5= EppaAYBPU?

1©1=2| T, ="(AB+AB)




Covariant tensors vs angular distributions

e The angular distributions of the particles emitted in a decay of
a resonance correspond to the square moduli of the
amplitudes

e Covariant formalism takes automatically into account
relativistic effects

More important the smaller the mass of the resonant system (larger
effect of Lorentz boost)

Relativistic vs non-relativistic angular distributions are different
Important effect with large statistics

26



Practical application of covariant tensors — example
Pp(S) =l ff— n'w

Initial state quantum numbers: 07(17)

Final state:
p’ =17 (17)
=1 (0"), pp momentum
P(/7’) = (-1)t = L(p°z’) must be odd == 1
SPY) =1=in'n)=1

Tensors:
p° spin:R,=q,-(quu, (spin 1)
q=p.—p,u="*(p.+p)p.+p)

Intermediate state: L(/*n°): L =1, —(r- v)v (relative angular momentum L=T)
r=po=PyV= (po+pp)/ S

Spin amplitude of the reaction: 7 @7 =1

A=(p.-p)xPo-py)=p.-p)xpg
o  sin2@ distribution for the angle between (p.- p.) and p, 27



Practical application of covariant tensors — example
o Ap('Sy) — KK, K% — Kz~ (particles of different masses)

Initial state quantum numbers: ~(0™)

Final state:
Ko =12 (0)
K% =2 (1), momentum p*
=1 (0"%) B
P(K°K?") = (-1)! = L(K°K?*) must be odd ==

TR T

Tensors:
K% spin : K,=q,-(@qWu, (spin 1)
g=p.—p,u="2*p.+p)p.+p)

Intermediate state: L(KYK?"): L,=r,—(rv)v, (spin 1) onee e sl
r=po—p,v=(pg+p)/s

Spin amplitude of the reaction: 1T® 1 =0

A=(p,-p)xPo-P)={p.-p)xp
o (1 + z°)cos?0 distribution for the angle between (p,- p.) and p* 28



Practical application of covariant tensors — example
o (S, — (1270)20, f(1270) > n*n

o Initial state quantum numbers: 17(0™™)

~  Final state:
f, =0*(2**)
x=1-(0%)
P(f,x%) = (-1)t = L(f,n°) must be even = 2
S(f) =2 = (') =2

- Tensors:
fospin: T,,=N3/2 (S,S, + 1/3 (g, — w,w,)) (spin 2)
w = (a+b),/mg

Intermediate state L(f,n"): M= \3/2 (NNg + 1/3 (Gpe = V,Vo)) (spin 2)
V= (P, + Py + P/ Vs

Spin amplitude of the reaction: 2 ®2 =0
A=¢ pvpa Tuv Mro
o 1 + z2/3 + z?cos20 + z%(cos?0 - 1/3)2 = (Y9,(0))? distribution 29



Summary: angular distributions

@ Spin 0 resonance

Flat angular distribution, in any wave (defined by the relative angular momentum)

@ Spin 1 resonance, with z = p/vs:
Swave: (1+ z°cos?6)  example: ¢/a/p production from spin singlet P,

P wave:
J=0: (1+2%) cos?6
J=1:sin’6 example: ¢/w/p production from spin triplet 3S,
J=2: Y2 + (1/6+ 2/3 z°)cos? 0

D wave:

J=1:1/6+ (Va+ 2/3 z°)cos? 6O
J=2: 34 (1 - cos?6)

Spin 2 resonance
S wave:

J=2: 1+22/3+ z°cos° 60 + z*%(cos?6— 1/3)?

30



Spin-Projection formalisms

® Different choices of the quantization axis

® All single particle states are derived from the basic states through a Lorentz
transformation and a Wigner rotation

Helicity: Canonical:
new axis z' parallel to momentum new axis z' rotated

31



Single particle state: Helicity
B, 4)

e 1) z-axis rotated around the
intermediate state momentum
direction

e 2) Lorentz boost along the momentum

B.0) = ) D)y(Ro) 15, 2)
m

32



Single particle state: Canonical formalism
B, jm) = Lpljm) = RoL, Ry *|jm)

e 1) rotation of the momentum
vector around the z-axis

e 2) Lorentz boost along z

e 3) z-axis rotated back to the
momentum direction

é; = Ro(6,¢,0)é,

33



Two-particle state: Helicity

® Built from single particle states (back-to-back)

Ps 5

|QgsAstAL) = — Ro[|LzPs|S/1 MLzpeltA)]

’Z]+ 1 .
|]M)ls)lt) = ?jdﬂ D] MAs—A |.Q sA t/1t>

Wigner rotation functions

® |Intrinsically non-covariant
D functions expressed in each resonance rest frame
p/m dependence

34



Two-particle state: Canonical

® Built from single particle Q0sm.tm,) = — |PE[|Lp .
sSM = — |—=[|Lps|sms)|Lp,|tm,)]
states (back-to-back) ‘ 4”\/; o
° s@t=S ,5m5) = D (smstme|Smg)|, smgtm)
° L&S=J L, Smg) = jdﬂ Yk, (Q) |9, Smg)
|JMLS) = Z (Lmy Smg|JM) (smstm,|Smg) f dQ Yh (Q) |Q2, smetm,)
mp,mg,mg,me

\ Clebsch-Gordan coefficients Spherical harmonics 35



Example 1: f>(1270) — n*n” decay
in helicity formalism

® Helicity amplitude:

mo_4m I+
A/11/12 = E(Qs, SA‘S’ t/lthl]M) = N]f/ll/lZDMA(QS)

® Since A=A;-A, = 0and J=2:

AZM (6, ¢) = V5(2000]00){0000|00)foo D (8, B)

The relevant D Wigner functions are 5: DZo(6,¢) =

d?,,(0) e ?®
d?,,(0) e”'®
dgo(6)
d3o(0) e'®
d%o(e) e

36



Example 1: f,(1270) — n*x” decay
in helicity formalism (cont.’ed)

® The intensity is given by

10) = ) 430, %) pum AZY" (0, 9)

M,M1
1 /1 0
® Being the spin density matrix P=z 0 1
15 . 3 1\’
1(6) = |fool? Tsm2 0 + 15sin® 8 cos? 6 + 5 Ecos2 0 -5
The amplitude is a constant:
1(0) = Ifool?

37



Example 2: pp(0*) — f,(1270)n’ — n*n =’
in helicity formalism

® Helicity amplitude for each of the angular momenta (f, spin and L(f, 2" )=2):
M _ J*
A3 3, = Nifa2, Daga (s)

® For the n° spin: |f,,|? = const.

® For the relative angular momentum between f, and z*:

AY(Qy, o) = (2020]00)(2000]00) o0 D% (8, $) = \F 1-1

For the f, spin (zero helicity):

A33(6, ) = V5(2000]00)(0000]00)f50D2; (8, p) = foo ¥
38


Presenter Notes
Presentation Notes
Cercare wigner functons e relazione con armoniche sferiche


Example 2: op(0-*) — f,(1270)x" — n*a n’
in helicity formalism (cont.’ed)

e Put everything together to get the total intensity:

2

1(0) = |A35(60, $)pooAd (6, d)|
= 5lfaofaol? (2cos? 6 — 1)’
= 5|fo0/20 5 €0S 5

to be compared with the example for the application of tensor
formalism

39



Covariant tensors vs helicity

e The two approaches are equivalent if:
The helicity amplitude is written in covariant form as well
The covariant tensor is properly normalized

e Tensor moduli:

Kinematic factors depending on p and g
Centrifugal barrier functions
Almost constant for sharp (narrow) resonances
Slowly varying functions of the momenta

They do not affect largely angular distributions
= inserted in the dynamical part of the amplitude

40



Summary: key points of spin formalisms

® Tensor formalism

Easy to handle and to code for INTEGER angular momenta
Half-integers: more complicated tensors
Use of non-normalized tensors allows centrifugal barrier functions to be omitted in the
energy-dependent parte of the amplitude

e Helicity formalism
based on Wigner rotation functions + helicity couplings
Half integer spin treated in a simpler way

e Canonical formalism
based on spherical armonics series + Clebsch-Gordan factors for momentum
couplings

Always use covariant formulations (whenever possible)

41



Moments analysis |

® Based on a Fourier decomposition of the final state, in each invariant mass

bin of the final state system
d functions can be expanded in spherical harmonics

® Spherical harmonics moments: directly related to
amplitudes
helicity partial waves and relative phases

® The density matrix gets absorbed in a spherical moment

z axis in the production plane:
Angular distribution of a 2-body system: sum of the real parts of spherical harmonic
moments

1(t,M,6,) —NZ z (Re ¥/™) Re V{™ (6, ¢)

=0 m=-1

42



Moments analysis I

® A new set of real coefficients t]"* can be obtained inverting the last equation
They depend on:

Momentum transfer t
Mass of the 2-body system M

® t/" related to spherical harmonics by

0 ifm=0
1/2 if m#0

1
(Re V™) = Nelmtlm gt = {

t* = (Di10(6, ¢, 0))

t" obtained by a fit = (¥;"*) = total amplitudes

43



Example: application of moments analysis

e Useful tool to gather further information, especially when
No evident signal in the Dalitz Plot
No crossing bands

100

D° —>|'_(°K+K_ 400 ;_ T E_ *f tio
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B = ' - '
- C —50 — 1
1.7 — 100 :— . E |
~— B 0 :T‘I1 HI I wa”‘r'“'r’*"rﬂ— 100 ll [ JLJ[ [
‘&1 B - 1 1.05 1 1.05
et -
NE1 .5 — 300 } t tzo
1.4 :— 200 :_ ++
1.3 - 100 = ¢
L SRR T n ok
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