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Overview

● Partial wave amplitudes
○ Isobar model and intermediate states
○ Partial wave decomposition
○ Initial state descriptions
○ At rest vs in-flight (energy dependent) 

interaction amplitudes

● The angular dependent part of the 
amplitude: spin formalisms
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The isobar model (Watson)
● Assumption: the overall reaction proceeds

via intermediate two-body processes
○ The many-body system is built through a tree of 

subsequent two-body decays
○ The two-body systems have the same behaviour

in each reaction step
○ Different initial states may interfere

● Ingredients:
○ Two-body spin algebra
○ Two-body scattering formalism

Isobar

Not suitable for rescattering processes
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Particles in intermediate states can mix 
and/or interfere…

● Many intermediate states can contribute to the same final state

○ Isoscalar mixing
■ same IG & JPC: η-η’, f2-f2’

○ I=0/I=1 mixing
■ ρ-ω

○ Kaon mixing
■ same IG & JP (no C defined)

● Interferences and spin effects determine particular patterns in the        
scattering amplitudes
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On the road to write an amplitude: step 1
● For each node of the decay tree an amplitude can be written as a 

function of:
○ Isospin: total and third component
○ Spin J of the mother particle
○ Angles in 3D space: Ω = (θ,φ)
○ Relative angular momentum ℓ between the daughter pair                                           

and the mother particle
○ Energy (s) of the decaying mother

● The full amplitude is the sum over all the nodes in the final state
● Other observables are summed over 

𝑓𝑓(𝐼𝐼, 𝐼𝐼3, 𝐽𝐽, ℓ, 𝑠𝑠,Ω) = 𝐼𝐼ℓ(𝐼𝐼, 𝐼𝐼3)𝑇𝑇𝐽𝐽𝐽(𝑠𝑠)𝑅𝑅𝐽𝐽𝐽(Ω) Partial wave amplitude
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The isospin dependence
● Intermediate states with identical particles must be weighted by     

proper Clebsch-Gordan coefficients stemming from the isospin
composition

● Example: 𝑝̅𝑝𝑝𝑝 → 𝜌𝜌𝜌𝜌
○ Initial states: pp in 1S0: IG=1-, 3S1: IG=0+    (I3=0)

○ Final states:  𝜌𝜌0π0, 𝜌𝜌±π∓, 𝜌𝜌∓π± → π+π-π0

1x1 1S0 (I=1) 3S1 (I=0)

ρ0π0 〈10 10|10〉 = 0 〈10 10|00〉 = -1/√3

𝜌𝜌±π∓ 〈1±1 1∓1 |10〉=±1/√2 〈1±1 1∓1|00〉 = 1/√3
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o Destructive interference in 3S1
o 1S0 →𝜌𝜌0π0 forbidden
o All isospin combinations must be summed over



Wave-optical approach of hadron scattering: partial wave
amplitudes

● Procedure to solve the Schrödinger equation in a scattering process
● The incident wave can be expanded in terms of Legendre polynomials Pℓ and 

a radial function Uℓ

● The scattered wave function can also be factorized in a radial x angular part 
product
○ The radial part Uℓ is parameterized in terms of phases δℓ and inelasticities ηℓ

𝑖𝑖 = Ψ𝑖𝑖 = �
ℓ=0

∞

𝑈𝑈ℓ(𝑟𝑟)𝑃𝑃ℓ(cos 𝜃𝜃)

Ψ𝑠𝑠 = Ψ𝑖𝑖 − Ψ𝑓𝑓 =
1
𝑘𝑘�
ℓ=0

∞

(2ℓ + 1)
𝜂𝜂ℓ exp( 2𝑖𝑖𝛿𝛿ℓ − 1)

2𝑖𝑖 𝑃𝑃ℓ(cos 𝜃𝜃)
exp( 𝑖𝑖𝑖𝑖𝑖𝑖)

𝑟𝑟

Angular amplitudeTℓ: dynamic amplitude 7
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The Breit-Wigner resonance formula
● Spin ℓ Resonance: when the elastic scattering amplitude (ηℓ=1) reaches

its maximum
○ δ = π/2 ⇒ 𝑇𝑇 = 𝑒𝑒𝑖𝑖𝛿𝛿 sin 𝛿𝛿 = 1/(cot 𝛿𝛿 − 𝑖𝑖)
○ cot 𝛿𝛿 ≈ −(𝐸𝐸 − 𝐸𝐸𝑅𝑅) � 2

Γ
○ If (𝐸𝐸 − 𝐸𝐸𝑅𝑅) ≈ Γ ≪ 𝐸𝐸𝑅𝑅 the resonance is symmetric

𝑇𝑇(𝐸𝐸) =
Γ/2

(𝐸𝐸𝑅𝑅 − 𝐸𝐸) − 𝑖𝑖𝑖/2
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T matrix features

● The T-matrix must be unitary (the 
probability of a reaction must not exceed
unity)

● Visualized via the Argand plot: ImTℓ vs ReTℓ

● If ηℓ ≤ 1:
○ δℓ varies from 0 to π/2

■ If δℓ = π/2 : Tℓ is purely imaginary and gets its
maximum value

𝑇𝑇ℓ =
𝜂𝜂ℓ exp(2𝑖𝑖𝛿𝛿ℓ) − 1

2𝑖𝑖

Resonance in ℓ wave
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Summing up PWAs: coherent vs incoherent
sum
● Interaction at rest:

○ No interference among terms with different JPC

■ Only possible to measure the orbital angular momentum ℓ of the initial state

● Scattering in flight:
o No well defined initial state (only a mixture)
o Relative angular momentum proportional to beam energy 
o Many waves interfere with each other
o Complex problem at high energy

 In pp annihilations (rule of thumb): ℓ ≈ pcms/200 MeV/c 

𝐴𝐴(𝑚𝑚, 𝜃𝜃,𝜙𝜙) = �
𝐽𝐽

𝛼𝛼𝐽𝐽 𝐹𝐹𝐽𝐽(𝑚𝑚,𝜃𝜃,𝜙𝜙) 2
αJ: amplitude weigh

complex number 
to be set by the fit
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How to write in-flight amplitudes
● Helicity formalism: helicities do not interfere
● Two transition amplitudes:

○ Tp: production matrix of a JPC state in flight
○ Td: decay matrix of a mother state

● Total transition amplitude for a reaction

● Ref. system: reaction rest frame & z axis along the projectile particle direction:      

𝑓𝑓𝜆𝜆1𝜆𝜆2 = �
𝐽𝐽𝐽𝐽

𝑝𝑝𝑖𝑖 𝑇𝑇𝑑𝑑 𝐽𝐽𝐽𝐽 𝐽𝐽𝐽𝐽 𝑇𝑇𝑝𝑝+ 𝑝𝑝1𝑝𝑝2𝜆𝜆1𝜆𝜆2

𝐻𝐻∗
𝜆𝜆1𝜆𝜆2
𝐽𝐽 𝐷𝐷∗𝑀𝑀𝜆𝜆

𝐽𝐽 (𝜃𝜃,𝜙𝜙, 0) (𝜆𝜆 = 𝜆𝜆1 − 𝜆𝜆2)

𝑎𝑎 𝑝𝑝1, 𝑠𝑠1, 𝜆𝜆1 + 𝑏𝑏 𝑝𝑝2, 𝑠𝑠2, 𝜆𝜆2 → 𝐽𝐽𝑃𝑃𝑃𝑃 → 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐽𝐽𝐽𝐽 𝑇𝑇𝑝𝑝+ 𝑝𝑝1𝑝𝑝2𝜆𝜆1𝜆𝜆2 = 𝐻𝐻∗
𝜆𝜆1𝜆𝜆2
𝐽𝐽 𝛿𝛿𝑀𝑀𝑀𝑀
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𝐷𝐷𝜆𝜆𝑀𝑀 0,0,0 = 𝛿𝛿𝜆𝜆𝑀𝑀



In-flight amplitudes II

● If the initial state is composed by a fermion pair (s1=s2=½ and λ1, λ2= ±½) one has 
only the λ = ±1, 0 components, i.e.

○ Of the many |JM〉 states produced in-flight, only the M=0,±1 projections contribute to the 
total amplitude

● Since the helicity (as the spin) is a measurable quantity, it does not interfere so the 
PWA’s have to be summed incoherently
○ Average over the initial state helicities: ¼
○ Sum over the final state helicities

● Further symmetries (parity, CP, etc) can be applied to simplify

𝜆𝜆 = 𝜆𝜆1 − 𝜆𝜆2 =
+1 𝐻𝐻∗

+−
𝐽𝐽

0 𝐻𝐻∗
++
𝐽𝐽 ,𝐻𝐻∗

−−
𝐽𝐽

−1 𝐻𝐻∗
−+
𝐽𝐽
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Total in-flight amplitude

● unknown parameters: helicity couplings
● selection rules help to reduce their number:

○ s+p waves in NN annihilation: 24x HJ
λ1,λ2 couplings 

■ 4x6 states (lowest): 1S0, 3S1, 1P1, 3P0, 3P1, 3P2

𝑢𝑢(𝜃𝜃,𝜙𝜙) =
1
4
�
𝜆𝜆1𝜆𝜆2

𝐹𝐹𝜆𝜆1𝜆𝜆2
2

=
1
4
�
𝜆𝜆1𝜆𝜆2

�
𝐽𝐽

𝑓𝑓𝜆𝜆
𝐽𝐽𝐻𝐻𝜆𝜆1𝜆𝜆2

𝐽𝐽
2

𝑓𝑓𝜆𝜆
𝐽𝐽 = 𝑇𝑇𝜆𝜆

𝐽𝐽𝐷𝐷𝜆𝜆𝜆
𝐽𝐽 (0,0,0) ≡ 𝑇𝑇𝜆𝜆

𝐽𝐽
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Selection rules for helicity couplings

● Parity conservation:  
○ HJ

-λ1,-λ2 = P(-1)J HJ
λ1,λ2

■ H++ = P(-1)J H--
■ H+- =  P(-1)J H-+

● From Clebsch-Gordan properties: since 

some couplings are zero, depending on L and S values
○ If L+S-1 = odd: H++ = H-- = 0
○ If J or S = 0 (or both): H+- = H-+ = 0  

𝐻𝐻∗
𝜆𝜆1𝜆𝜆2
𝐽𝐽 = �

𝐿𝐿𝐿𝐿

2𝐿𝐿 + 1
2𝐽𝐽 + 1

𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐽𝐽𝐽𝐽 𝑠𝑠1𝜆𝜆1 𝑠𝑠2 − 𝜆𝜆2 𝑆𝑆𝑆𝑆 𝛼𝛼𝐿𝐿𝐿𝐿
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Helicity couplings in fermion-antifermion initial 
states

● 1S0, 1P1 and 3P0 never interfere with 3P1

● To write the total amplitude one has to separate initial 
states with ++/-- (J1) and +-/-+ (J2) non-zero couplings
○ Up to P wave:

○ H++ and H+- are free complex parameters in the fit

2S+1LJ JP H++/H– (J1) H-+ /H+- (J2)
1S0 0- OK 0
3S1 1- OK OK
1P1 1+ OK 0
3P0 0+ OK 0
3P1 1+ 0 OK
3P2 2+ OK OK
1D2 2- OK 0
3D1 1- OK OK
3D2 2- 0 OK
3D3 3+ OK OK

𝑢𝑢(𝜃𝜃,𝜙𝜙) = �
𝐽𝐽1

𝐻𝐻++
𝐽𝐽 𝑓𝑓𝐽𝐽,0

2

+ �
𝐽𝐽1

𝑃𝑃(1−)𝐽𝐽𝐻𝐻++
𝐽𝐽 𝑓𝑓𝐽𝐽,0

2

+

+ �
𝐽𝐽2

𝐻𝐻+−
𝐽𝐽 𝑓𝑓𝐽𝐽,−1

2

+ �
𝐽𝐽2

𝑃𝑃(1−)𝐽𝐽𝐻𝐻+−
𝐽𝐽 𝑓𝑓𝐽𝐽,1

2
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Summary: Partial Waves decomposition

1. Estimate the number of partial waves you have to insert in the amplitude
(depending on energy)

2. Consider the type of process (and choose the most proper reference system)
○ At rest interaction

■ Coherent sum on JPC states
○ In-flight interaction

■ Incoherent sum on helicities

3. Define the quantum numbers of every partial wave of the initial state and how they
match with final state 2-body systems

4. Go on building each partial wave amplitude with spins and energy dependent part

16



Three body decays of resonances
● Extension of DP features

○ two observables only needed to 
describe the decay
■ Analyzers:

● Normal to the decay plane
● Break-up momentum of a pair in the 

resonance c.m.s.

○ DP description useful if the decay
particles have the same mass

η

ω

17

Lines and spots: region of 
depletion of DP density



Selecting the ω meson: use of the λ parameter 
method

● Statistical selection of the events most
likely coming from a ω decay

○ ω events: λ distribution proportional to λ
○ Background events: flat λ distribution
○ Signal obtained by subtracting the λ

distributions in sides bins on both ω sides, 
within a given interval
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Spin-Angular part of the 
amplitude: Spin Formalisms

● Zemach formalism
● Helicity & canonical formalisms
● Moments analysis
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Spin formalisms

● Several equivalent descriptions:
○ Tensor formalisms

■ Simple and fast for small L and S
● Non relativistic (Zemach)
● Covariant form (Rarita-Schwinger)

○ Spin-projection formalisms
■ Quantization axis chosen + proper rotations
■ Efficient also for large L and S

● Helicity formalism (good for half-integer spins)
● Transversity formalism
● Canonical (orbital) formalism
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Once a formalism is chosen…

● Definition of a single particle state of given spin S

● Definition of a two-particle state in its center-of-mass system 
and of the relative angular momentum L between particles

● Transformation to states of given total angular momentum J

● Apply symmetry conservation and kinematic constraints to the 
amplitudes
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Tensor formalism: non-relativistic Zemach
tensors

● Zemach (non-covariant) treatment: 
○ Every angular momentum L is described by a symmetric and traceless

tensor of rank L in 3-D phase space
○ Written in the rest frame of every di-particle frame, without any boost

to a general reference frame
■ L = 0  ⇒ A0 = 1
■ L = 1   ⇒ A1

i = qi
■ L = 2  ⇒ A2

ij = 3/2 qiqj – ½|qi|2 δij

○ Coupling of spins and orbital angular momenta:
■ Tensor algebra and contractions

○ These amplitudes are not Lorentz invariant
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How to build covariant tensors

● A spin rank-1 tensor has no time component in the resonant rest frame:
it only represents the behaviour of a particle at rest under rotations
○ Sμ: space like vector ⇒ Sμuμ = 0

● Spin-1 covariant tensor: Sμ = qμ – (qu)uμ
○ qμ = aμ – bμ break-up momentum (in R = a+b cms)
○ S norma is negative: S2 = q2 – (qu)2 = - |qR|2

● Spin-2 covariant tensor: Tμν = SμSν – 1/3 S2(gμν – uμuν)
○ T is traceless and T2 > 0

Velocity of the R resonance of mass m2 = (a+b)2:  
uμ = (aμ +bμ)/m   

(u2 = 1 : time-like vector)

23
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Properties of covariant tensors

● General rule: orthogonalization of the 4-velocity and the spin or the 
angular momentum of the particle
○ Tensor contraction
○ In the JP rest frame:

■ qμ = c μ – (a+b)μ break-up momentum
■ u μ = (1, 0) cms velocity

● Spins and orbital momentum have the same representation

● For a particle of spin s: rank-s tensor
○ (p2+m2) Φμ1 μ2…μs = 0
○ With the following symmetry, tracelessness and orthogonality properties:

■ Φ…μi…μj… = Φ…μj…μi

■ gμiμj Φ…μi…μj… = 0
■ pμiΦ …μi… = 0

a

b
c JPC

24



Combination of covariant tensors
● Tensors are composed following the quantum-mechanical

rules of angular momentum coupling: 
○ j1⊕ j2 = J    ⇒ | j1-j2 | ≤ J ≤ j1+j2

1 ⊕ 1 = 0 S = AμBμ

1 ⊕ 1 = 1 Sμ= εμνρσ AνBρuσ

1 ⊕ 1 = 2 Tμν = ½(AμBν+ AνBμ)
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Covariant tensors vs angular distributions

● The angular distributions of the particles emitted in a decay of 
a resonance correspond to the square moduli of the 
amplitudes

● Covariant formalism takes automatically into account 
relativistic effects
○ More important the smaller the mass of the resonant system (larger

effect of Lorentz boost)
○ Relativistic vs non-relativistic angular distributions are different

■ Important effect with large statistics
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Practical application of covariant tensors – example 1
● pp(3S1) →𝜌𝜌0 π0,  𝜌𝜌0 → π+π-

○ Initial state quantum numbers: 0-(1--)

○ Final state:
■ 𝜌𝜌0 = 1+ (1--)
■ π = 1- (0-+), p0 momentum

● P(𝜌𝜌0 π0) = (-1)L ⇒ L(ρ0π0) must be odd == 1
● S(ρ0) = 1 ⇒ ℓ(π+π-) = 1

○ Tensors:
■ 𝜌𝜌0 spin : Rμ= qμ – (q⋅u)uμ (spin 1) 

● q = p+ – p-, u = ½ * (p++ p-)/(p++ p-)

■ Intermediate state: L(𝜌𝜌0 π0): Lμ= rμ – (r⋅v)vμ (relative angular momentum L=1)
● r = p0 – pρ, v = (p0 + pρ)/√s

■ Spin amplitude of the reaction: 1 ⊕ 1 = 1
● A = (p+ - p-) × (p0 - pρ) = (p+ - p-) × p0   

○ sin2θ distribution for the angle between (p+- p-) and p0
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Practical application of covariant tensors – example 2
● pp(1S0) → K0K*0,  K*0 → K+π- (particles of different masses)

○ Initial state quantum numbers: - (0-+)

○ Final state:
■ K0 = ½ (0-)
■ K0* = ½ (1-), momentum p*

■ π = 1- (0-+)
● P(K0K0*) = (-1)L ⇒ L(K0K0*) must be odd == 1

○ Tensors:
■ K0* spin : Kμ= qμ – (q⋅u)uμ (spin 1)

● q = p+ – p-, u = ½ * (p++ p-)/(p++ p-)

■ Intermediate state: L(K0K0*): Lμ= rμ – (r⋅v)vμ (spin 1)
● r = p0 – p*, v = (p0 + p*)/ √s

■ Spin amplitude of the reaction: 1 ⊕ 1 = 0
● A = (p+ - p-) × (p0 – p*) = (p+ - p-) × p*

○ (1 + z2)cos2θ distribution for the angle between (p+- p-) and p* 28



Practical application of covariant tensors – example 3
● pp(1S0) → f2(1270)π0,  f2(1270) → π+π-

○ Initial state quantum numbers: 1-(0-+)

○ Final state:
■ f2 = 0+ (2++)
■ π = 1 - (0-+)

● P(f2π0) = (-1)L ⇒ L(f2π0) must be even = 2
● S(f2) = 2 ⇒ ℓ(π+π-) = 2

○ Tensors:
■ f2 spin : Tμν= √3/2 (SμSν + 1/3 (gμν – wμwν))  (spin 2)

● w = (a+b)μ/mR

■ Intermediate state L(f2π0): Mρσ= √3/2 (NρNσ + 1/3 (gρσ – vρvσ))  (spin 2)
● v = (pa + pb + pc)/ √s

■ Spin amplitude of the reaction: 2 ⊕ 2 = 0
● A = ε μνρσ Tμν Mρσ

○ 1 + z2/3 + z2cos2θ + z4(cos2θ - 1/3)2 ≈ (Y0
2(θ))2 distribution 29



Summary: angular distributions

● Spin 0 resonance
○ Flat angular distribution, in any wave (defined by the relative angular momentum)

● Spin 1 resonance, with z = p/√s:
○ S wave: (1+ z2cos2θ) example: ϕ/ω/ρ production from spin singlet 1P1
○ P wave:

■ J=0: (1+z2) cos2θ
■ J=1: sin2θ example: ϕ/ω/ρ production from spin triplet 3S1■ J=2: ½ + (1/6+ 2/3 z2)cos2θ

○ D wave: 
■ J=1: 1/6+ (½+ 2/3 z2)cos2θ
■ J=2: ¾ (1 - cos2θ)

● Spin 2 resonance
○ S wave:

■ J=2: 1+z2/3+ z2cos2θ + z4(cos2θ – 1/3)2

30



Spin-Projection formalisms
● Different choices of the quantization axis
● All single particle states are derived from the basic states through a Lorentz 

transformation and a Wigner rotation

Helicity: 
new axis z’ parallel to momentum

Canonical: 
new axis z’ rotated
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Single particle state: Helicity

● 1) z-axis rotated around the 
intermediate state  momentum
direction

● 2) Lorentz boost along the momentum

�𝑅𝑅 𝑝𝑝, 𝜆𝜆 = �𝑅𝑅𝑝𝑝, 𝜆𝜆

𝑝⃗𝑝, 𝜆𝜆 = �
𝑚𝑚

𝐷𝐷𝑚𝑚𝑚𝑚
𝑗𝑗 (𝑅𝑅0) 𝑝⃗𝑝, 𝜆𝜆

�𝑅𝑅0 = �𝑅𝑅0(𝜃𝜃,𝜙𝜙, 0)

𝑝𝑝, 𝜆𝜆
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Single particle state: Canonical formalism

● 1) rotation of the momentum
vector around the z-axis

● 2) Lorentz boost along z
● 3) z-axis rotated back to the 

momentum direction

�𝑅𝑅 𝑝⃗𝑝,𝑚𝑚 = �
𝑚𝑚𝑚

𝐷𝐷𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 �𝑅𝑅𝑝⃗𝑝,𝑚𝑚

𝑒𝑒𝑝⃗𝑝 = �𝑅𝑅0(𝜃𝜃,𝜙𝜙, 0)𝑒𝑒𝑧𝑧

𝑝⃗𝑝, 𝑗𝑗𝑗𝑗 ≡ 𝐿𝐿𝑝⃗𝑝 𝑗𝑗𝑗𝑗 = �𝑅𝑅0𝐿𝐿𝑧𝑧 �𝑅𝑅0−1 𝑗𝑗𝑗𝑗
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Two-particle state: Helicity
● Built from single particle states (back-to-back)

● Intrinsically non-covariant
○ D functions expressed in each resonance rest frame 
○ p/m dependence

Ω𝑠𝑠𝑠𝑠𝜆𝜆𝑠𝑠𝑡𝑡𝜆𝜆𝑡𝑡 ≡
1
4𝜋𝜋

𝑝𝑝𝑠𝑠
𝑚𝑚

�𝑅𝑅0 |𝐿𝐿𝑧𝑧𝑝𝑝𝑠𝑠 𝑠𝑠𝜆𝜆𝑠𝑠 |𝐿𝐿𝑧𝑧𝑝𝑝𝑡𝑡 𝑡𝑡𝜆𝜆𝑡𝑡

𝐽𝐽𝐽𝐽𝜆𝜆𝑠𝑠𝜆𝜆𝑡𝑡 ≡
2𝐽𝐽 + 1
4𝜋𝜋

�𝑑𝑑𝑑 𝐷𝐷𝑀𝑀,𝜆𝜆𝑠𝑠−𝜆𝜆𝑡𝑡
𝐽𝐽∗ Ω, 𝑠𝑠𝜆𝜆𝑠𝑠𝑡𝑡𝜆𝜆𝑡𝑡

Wigner rotation functions
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Two-particle state: Canonical

● Built from single particle
states (back-to-back)

● s ⊕ t = S

● L ⊕ S = J

Ω𝑠𝑠0𝑠𝑠𝑚𝑚𝑠𝑠𝑡𝑡𝑚𝑚𝑡𝑡 ≡
1
4𝜋𝜋

𝑝𝑝𝑠𝑠
𝑚𝑚

|𝐿𝐿𝑝⃗𝑝𝑠𝑠 𝑠𝑠𝑚𝑚𝑠𝑠 |𝐿𝐿𝑝⃗𝑝𝑡𝑡 𝑡𝑡𝑚𝑚𝑡𝑡

Ω, 𝑠𝑠𝑚𝑚𝑠𝑠 = �
𝑚𝑚𝑠𝑠,𝑚𝑚𝑡𝑡

𝑠𝑠𝑚𝑚𝑠𝑠𝑡𝑡𝑚𝑚𝑡𝑡 𝑆𝑆𝑚𝑚𝑠𝑠 Ω, 𝑠𝑠𝑚𝑚𝑠𝑠𝑡𝑡𝑚𝑚𝑡𝑡

𝐿𝐿𝑚𝑚𝐿𝐿𝑆𝑆𝑚𝑚𝑆𝑆 = �𝑑𝑑𝑑 𝑌𝑌𝑚𝑚𝐿𝐿
𝐿𝐿 (Ω) Ω, 𝑆𝑆𝑚𝑚𝑆𝑆

𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 = �
𝑚𝑚𝐿𝐿,𝑚𝑚𝑆𝑆,𝑚𝑚𝑠𝑠,𝑚𝑚𝑡𝑡

𝐿𝐿𝑚𝑚𝐿𝐿𝑆𝑆𝑚𝑚𝑆𝑆 𝐽𝐽𝐽𝐽 𝑠𝑠𝑚𝑚𝑠𝑠𝑡𝑡𝑚𝑚𝑡𝑡 𝑆𝑆𝑚𝑚𝑆𝑆 �𝑑𝑑𝑑 𝑌𝑌𝑚𝑚𝐿𝐿
𝐿𝐿 (Ω) Ω𝑆𝑆0, 𝑠𝑠𝑚𝑚𝑠𝑠𝑡𝑡𝑚𝑚𝑡𝑡

Clebsch-Gordan coefficients Spherical harmonics 35



Example 1: f2(1270) → π+π- decay
in helicity formalism
● Helicity amplitude:

● Since λ= λ1-λ2 = 0 and J=2:

● The relevant D Wigner functions are 5: 

𝐴𝐴𝜆𝜆1𝜆𝜆2
𝐽𝐽𝐽𝐽 =

4𝜋𝜋
𝜌𝜌𝑠𝑠

Ω𝑠𝑠, 𝑠𝑠𝜆𝜆𝑠𝑠, 𝑡𝑡𝜆𝜆𝑡𝑡 M 𝐽𝐽𝐽𝐽 = 𝑁𝑁𝐽𝐽𝑓𝑓𝜆𝜆1𝜆𝜆2𝐷𝐷𝑀𝑀𝑀𝑀
𝐽𝐽∗ (Ω𝑠𝑠)

𝐴𝐴002𝑀𝑀(𝜃𝜃,𝜙𝜙) = 5 2000 00 0000 00 𝑓𝑓00𝐷𝐷𝑀𝑀𝑀2∗ (𝜃𝜃,𝜙𝜙)

𝐷𝐷𝑀𝑀𝑀2∗ (𝜃𝜃,𝜙𝜙) =

𝑑𝑑−202 (𝜃𝜃) 𝑒𝑒−2𝑖𝑖𝑖𝑖

𝑑𝑑−102 (𝜃𝜃) 𝑒𝑒−𝑖𝑖𝑖𝑖

𝑑𝑑002 (𝜃𝜃)
𝑑𝑑102 (𝜃𝜃) 𝑒𝑒𝑖𝑖𝑖𝑖

𝑑𝑑202 (𝜃𝜃) 𝑒𝑒2𝑖𝑖𝑖𝑖 36



Example 1: f2(1270) → π+π- decay
in helicity formalism (cont.’ed)
● The intensity is given by 

● Being the spin density matrix

● The amplitude is a constant:

𝐼𝐼(𝜃𝜃) = �
𝑀𝑀,𝑀𝑀𝑀

𝐴𝐴002𝑀𝑀(𝜃𝜃,𝜙𝜙)𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝐴𝐴002𝑀𝑀𝑀∗(𝜃𝜃,𝜙𝜙)

𝜌𝜌 =
1
5

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

𝐼𝐼(𝜃𝜃) = 𝑓𝑓00 2 15
4

sin2 𝜃𝜃 + 15 sin2 𝜃𝜃 cos2 𝜃𝜃 + 5
3
2

cos2 𝜃𝜃 −
1
2

2

𝐼𝐼(𝜃𝜃) = 𝑓𝑓00 2
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Example 2: pp(0-+) → f2(1270)π0 → π+π- π0

in helicity formalism
● Helicity amplitude for each of the angular momenta (f2 spin and L(f2 π0 )=2):

● For the π0 spin: |f00|2 = const.
● For the relative angular momentum between f2 and π0:

● For the f2 spin (zero helicity):

𝐴𝐴𝜆𝜆1𝜆𝜆2
𝐽𝐽𝐽𝐽 = 𝑁𝑁𝐽𝐽𝑓𝑓𝜆𝜆1𝜆𝜆2𝐷𝐷𝑀𝑀𝑀𝑀

𝐽𝐽∗ (Ω𝑠𝑠)

𝐴𝐴0000(Ω𝑓𝑓2𝜋𝜋0) = 2020 00 2000 00 𝑓𝑓00𝐷𝐷000∗(𝜃𝜃,𝜙𝜙) =
1
5
⋅ 1 ⋅ 1

𝐴𝐴0020(𝜃𝜃,𝜙𝜙) = 5 2000 00 0000 00 𝑓𝑓00𝐷𝐷002∗(𝜃𝜃,𝜙𝜙) = 𝑓𝑓00𝑌𝑌02
38
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Example 2: p p(0-+) → f2(1270)π0 → π+π- π0

in helicity formalism (cont.’ed)

● Put everything together to get the total intensity:

to be compared with the example for the application of tensor
formalism

𝐼𝐼 𝜃𝜃 = 𝐴𝐴0000 𝜃𝜃,𝜙𝜙 𝜌𝜌00𝐴𝐴2000 𝜃𝜃,𝜙𝜙 2

= 5 𝑓𝑓00𝑓𝑓20 2 3
2

cos2 𝜃𝜃 − 1
2

2
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Covariant tensors vs helicity

● The two approaches are equivalent if:
○ The helicity amplitude is written in covariant form as well
○ The covariant tensor is properly normalized

● Tensor moduli:
○ Kinematic factors depending on p and q

 Centrifugal barrier functions
 Almost constant for sharp (narrow) resonances
 Slowly varying functions of the momenta
 They do not affect largely angular distributions

⇒ inserted in the dynamical part of the amplitude
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Summary: key points of spin formalisms
● Tensor formalism

○ Easy to handle and to code for INTEGER angular momenta
■ Half-integers: more complicated tensors
■ Use of non-normalized tensors allows centrifugal barrier functions to be omitted in the 

energy-dependent parte of the amplitude

● Helicity formalism
○ based on Wigner rotation functions + helicity couplings
○ Half integer spin treated in a simpler way

● Canonical formalism
○ based on spherical armonics series + Clebsch-Gordan factors for momentum

couplings

Always use covariant formulations (whenever possible)
41



Moments analysis I

● Based on a Fourier decomposition of the final state, in each invariant mass       
bin of the final state system
○ d functions can be expanded in spherical harmonics

● Spherical harmonics moments: directly related to 
○ amplitudes
○ helicity partial waves and relative phases

● The density matrix gets absorbed in a spherical moment
● z axis in the production plane:

○ Angular distribution of a 2-body system: sum of the real parts of spherical harmonic
moments

𝐼𝐼(𝑡𝑡,𝑀𝑀, 𝜃𝜃,𝜙𝜙) = 𝑁𝑁�
𝑙𝑙=0

∞

�
𝑚𝑚=−𝑙𝑙

𝑙𝑙

Re𝑌𝑌𝑙𝑙𝑚𝑚 Re𝑌𝑌𝑙𝑙𝑚𝑚 (𝜃𝜃,𝜙𝜙)
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Moments analysis II
● A new set of real coefficients 𝑡𝑡𝑙𝑙𝑚𝑚 can be obtained inverting the last equation

○ They depend on:
■ Momentum transfer t
■ Mass of the 2-body system M

● 𝑡𝑡𝑙𝑙𝑚𝑚 related to spherical harmonics by

● 𝑡𝑡𝑙𝑙𝑚𝑚 obtained by a fit ⇒ 𝑌𝑌𝑙𝑙𝑚𝑚 ⇒ total amplitudes

Re𝑌𝑌𝑙𝑙𝑚𝑚 =
1
𝑁𝑁 𝜀𝜀𝑙𝑙

𝑚𝑚𝑡𝑡𝑙𝑙𝑚𝑚 𝜀𝜀𝑙𝑙𝑚𝑚 = � 0 𝑖𝑖𝑖𝑖 𝑚𝑚 = 0
1/2 𝑖𝑖𝑖𝑖 𝑚𝑚 ≠ 0

𝑡𝑡𝑙𝑙𝑚𝑚 = 𝐷𝐷𝑀𝑀𝑀𝐿𝐿 (𝜃𝜃,𝜙𝜙, 0)
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Example: application of moments analysis

● Useful tool to gather further information, especially when
○ No evident signal in the Dalitz Plot 
○ No crossing bands
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