Experimental methods in Hadron Spectroscopy

Spin and parity determination procedure

Alessandra Filippi, INFN Torino

Overview

- Partial wave amplitudes
 - Isobar model and intermediate states
 - Partial wave decomposition
 - Initial state descriptions
 - At rest vs in-flight (energy dependent) interaction amplitudes

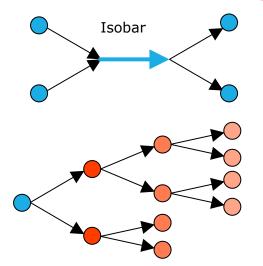
The angular dependent part of the amplitude: spin formalisms

The isobar model (Watson)

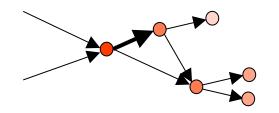
- Assumption: the overall reaction proceeds via intermediate two-body processes
 - The many-body system is built through a tree of subsequent two-body decays
 - The two-body systems have the same behaviour in each reaction step
 - Different initial states may interfere

Ingredients:

- Two-body spin algebra
- Two-body scattering formalism



Not suitable for rescattering processes



Particles in intermediate states can mix and/or interfere...

Many intermediate states can contribute to the same final state

```
• Isoscalar mixing

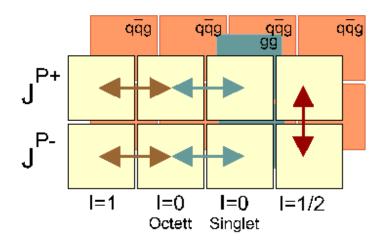
• same I^G \& J^{PC}: \eta - \eta', f_2 - f_2'

• I=0/I=1 mixing

• \rho - \omega

• Kaon mixing

• same I^G \& J^P (no C defined)
```



Interferences and spin effects determine particular patterns in the scattering amplitudes

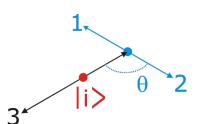
On the road to write an amplitude: step 1

- For each node of the decay tree an amplitude can be written as a function of:
 - Isospin: total and third component
 - Spin J of the mother particle
 - Angles in 3D space: $\Omega = (\theta, \varphi)$
 - Relative angular momentum \(\ell \) between the daughter pair and the mother particle
 - Energy (s) of the decaying mother

$$f(I, I_3, J, \ell, s, \Omega) = I_{\ell}(I, I_3) T_{J\ell}(s) R_{J\ell}(\Omega)$$

Partial wave amplitude

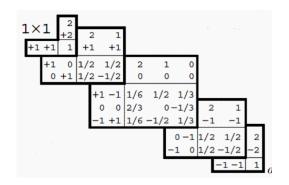
- The full amplitude is the sum over all the nodes in the final state
 - Other observables are summed over



The isospin dependence

- Intermediate states with identical particles must be weighted by proper **Clebsch-Gordan coefficients** stemming from the isospin composition
- Example: $\bar{p}p \rightarrow \rho\pi$ Initial states: $\bar{p}p$ in ${}^{1}\textbf{S}_{0}$: $I^{G}=1^{-}$, ${}^{3}\textbf{S}_{1}$: $I^{G}=0^{+}$ ($I_{3}=0$)
 - \circ Final states: $\rho^0 \pi^0$, $\rho^{\pm} \pi^{\mp}$, $\rho^{\mp} \pi^{\pm} \to \pi^+ \pi^- \pi^0$

1x1	${}^{1}S_{0}(I=1)$	³ S ₁ (I=0)
$\rho^0\pi^0$	(10 10 10) = 0	(10 10 00) = -1/√3
$ ho^\pm\pi^\mp$	⟨1±1 1∓1 10⟩=±1/√2	$\langle 1\pm 1 \ 1\mp 1 00\rangle = 1/\sqrt{3}$



- Destructive interference in 3S_1 ${}^1S_0 \rightarrow \rho^0\pi^0$ forbidden All isospin combinations must be summed over

Wave-optical approach of hadron scattering: partial wave amplitudes

- Procedure to solve the Schrödinger equation in a scattering process
- The incident wave can be expanded in terms of Legendre polynomials P_{ℓ} and a radial function U_{ℓ}

$$|i\rangle = \Psi_i = \sum_{\ell=0}^{\infty} U_{\ell}(r) P_{\ell}(\cos \theta)$$

- The scattered wave function can also be factorized in a radial x angular part product
 - The radial part U_l is parameterized in terms of phases δ_l and inelasticities η_l

Plane wave

$$\Psi_{\mathcal{S}} = \Psi_{i} - \Psi_{f} = \frac{1}{k} \sum_{\ell=0}^{\infty} (2\ell + 1) \frac{\eta_{\ell} \exp(2i\delta_{\ell} - 1)}{2i} P_{\ell}(\cos \theta) \frac{\exp(ikr)}{r}$$

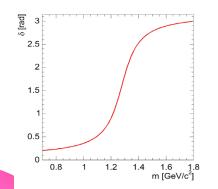
The Breit-Wigner resonance formula

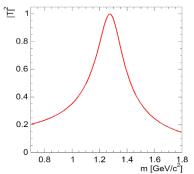
• **Spin** ℓ **Resonance**: when the elastic scattering amplitude (η_{ℓ} =1) reaches its maximum

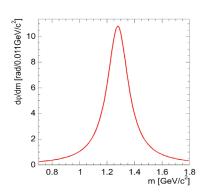
$$\delta = \pi/2 \Rightarrow T = e^{i\delta} \sin \delta = 1/(\cot \delta - i)$$

- $\circ \cot \delta \approx -(E E_R) \cdot \frac{2}{\Gamma}$
- If $|(E E_R)| \approx \Gamma \ll E_R$ the resonance is symmetric

$$T(E) = \frac{\Gamma/2}{(E_R - E) - i\Gamma/2}$$



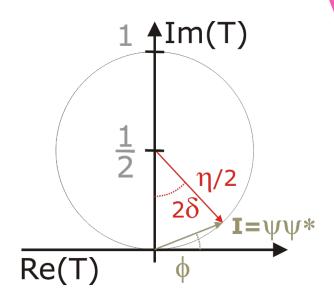




T matrix features

$$T_{\ell} = \frac{\eta_{\ell} \exp(2i\delta_{\ell}) - 1}{2i}$$

- The T-matrix must be unitary (the probability of a reaction must not exceed unity)
- Visualized via the Argand plot: ImT_ℓ vs ReT_ℓ
- If $\eta_{\ell} \leq 1$:
 - \circ δ_ℓ varies from 0 to $\pi/2$
 - If $\delta_{\ell} = \pi/2$: T_{ℓ} is purely imaginary and gets its maximum value



Resonance in \(\ext{\ell} \) wave

Summing up PWAs: coherent vs incoherent sum

Interaction at rest:

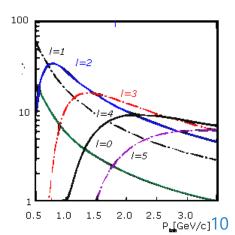
- \circ No interference among terms with different J^{PC}
 - Only possible to measure the orbital angular momentum ℓ of the initial state

$$A(m,\theta,\phi) = \sum_{J} \alpha_{J} |F_{J}(m,\theta,\phi)|^{2}$$

α_J: amplitude weigh complex number to be set by the fit

Scattering in flight:

- No well defined initial state (only a mixture)
- Relative angular momentum proportional to beam energy
- Many waves interfere with each other
- Complex problem at high energy
 - In $\bar{p}p$ annihilations (rule of thumb): $\ell \approx p_{cms}/200 \text{ MeV/c}$



How to write in-flight amplitudes

- Helicity formalism: helicities do not interfere
- Two transition amplitudes:
 - \circ T_p: production matrix of a J^{PC} state in flight
 - T_d: decay matrix of a mother state
- Total transition amplitude for a reaction

$$a(p_1, s_1, \lambda_1) + b(p_2, s_2, \lambda_2) \rightarrow J^{PC} \rightarrow final\ state$$

$$f_{\lambda_1 \lambda_2} = \sum_{JM} \langle p_i | T_d | JM \rangle \langle JM | T_p^+ | p_1 p_2 \lambda_1 \lambda_2 \rangle$$

$$H^*_{\lambda_1 \lambda_2} D^*_{M\lambda}(\theta, \phi, 0) \qquad (\lambda = \lambda_1 - \lambda_2)$$

Ref. system: reaction rest frame & z axis along the projectile particle direction:

$$D_{\lambda}^{M}(0,0,0) = \delta_{\lambda}^{M} \qquad \qquad \langle JM|T_{p}^{+}|p_{1}p_{2}\lambda_{1}\lambda_{2}\rangle = H^{*J}_{\lambda_{1}\lambda_{2}}\delta_{M\lambda}$$

In-flight amplitudes II

If the initial state is composed by a fermion pair $(s_1=s_2=1/2)$ and λ_1 , $\lambda_2=\pm 1/2$ one has only the $\lambda=\pm 1$, 0 components, i.e.

$$\lambda = \lambda_1 - \lambda_2 = \begin{cases} +1 & H^*_{+-}^J \\ 0 & H^*_{++}^J, H^*_{--}^J \\ -1 & H^*_{-+}^J \end{cases}$$

- Of the many |JM⟩ states produced in-flight, only the M=0,±1 projections contribute to the total amplitude
- Since the helicity (as the spin) is a measurable quantity, it does not interfere so the PWA's have to be summed incoherently
 - Average over the initial state helicities: 1/4
 - Sum over the final state helicities
 - Further symmetries (parity, CP, etc) can be applied to simplify

Total in-flight amplitude

$$u(\theta,\phi) = \frac{1}{4} \sum_{\lambda_1 \lambda_2} \left| F_{\lambda_1 \lambda_2} \right|^2 = \frac{1}{4} \sum_{\lambda_1 \lambda_2} \left| \sum_J f_{\lambda}^J H_{\lambda_1 \lambda_2}^J \right|^2$$

$$f_{\lambda}^{J} = T_{\lambda}^{J} D_{\lambda 0}^{J}(0,0,0) \equiv T_{\lambda}^{J}$$

- unknown parameters: helicity couplings
- selection rules help to reduce their number:
 - s+p waves in $\overline{N}N$ annihilation: 24x $H^{J}_{\lambda 1,\lambda 2}$ couplings
 - 4x6 states (lowest): ${}^{1}S_{0}$, ${}^{3}S_{1}$, ${}^{1}P_{1}$, ${}^{3}P_{0}$, ${}^{3}P_{1}$, ${}^{3}P_{2}$

Selection rules for helicity couplings

Parity conservation:

$$H^{J}_{-\lambda 1,-\lambda 2} = P(-1)^{J} H^{J}_{\lambda 1,\lambda 2}$$

$$H_{++} = P(-1)^{J} H_{--}$$

$$H_{+-} = P(-1)^{J} H_{-+}$$

From Clebsch-Gordan properties: since

$$H^{*J}_{\lambda_1\lambda_2} = \sum_{LS} \sqrt{\frac{2L+1}{2J+1}} \langle L0S\lambda|J\lambda\rangle\langle s_1\lambda_1 \ s_2 - \lambda_2|S\lambda\rangle\alpha_{LS}$$

some couplings are zero, depending on L and S values

```
o If L+S-1 = \text{odd}: H_{++} = H_{--} = 0
o If J or S = 0 (or both): H_{+-} = H_{-+} = 0
```

Helicity couplings in fermion-antifermion initial states

	$H_{++}/H_{-}(J_{1})$	$H_{-+}/H_{+-}(J_2)$
0-	OK	0
1-	OK	OK
1+	OK	0
<i>O</i> +	OK	0
1+	0	OK
2+	OK	OK
2-	OK	0
1-	OK	OK
2-	0	OK
<i>3</i> +	OK	OK
	1- 1+ 0+ 1+ 2+ 2- 1- 2-	1- OK 1+ OK 0+ OK 1+ 0 2+ OK 2- OK 2- OK 2- O

- ${}^{1}S_{0}$, ${}^{1}P_{1}$ and ${}^{3}P_{0}$ never interfere with ${}^{3}P_{1}$
- To write the total amplitude one has to separate initial states with $++/--(J_1)$ and $+-/-+(J_2)$ non-zero couplings

 Up to P wave:

$$u(\theta,\phi) = \left| \sum_{J_1} H_{++}^J f_{J,0} \right|^2 + \left| \sum_{J_1} P(1-)^J H_{++}^J f_{J,0} \right|^2 + \left| \sum_{J_2} H_{+-}^J f_{J,-1} \right|^2 + \left| \sum_{J_2} P(1-)^J H_{+-}^J f_{J,1} \right|^2$$

 H_{++} and H_{+-} are free complex parameters in the fit

Summary: Partial Waves decomposition

- 1. Estimate the number of partial waves you have to insert in the amplitude (depending on energy)
- 2. Consider the type of process (and choose the most proper reference system)
 - At rest interaction
 - Coherent sum on J^{PC} states
 - In-flight interaction
 - Incoherent sum on helicities
- 3. Define the quantum numbers of every partial wave of the initial state and how they match with final state 2-body systems
- 4. Go on building each partial wave amplitude with spins and energy dependent part

Three body decays of resonances

- Extension of DP features
 - two observables only needed to describe the decay
 - Analyzers:
 - Normal to the decay plane
 - Break-up momentum of a pair in the resonance c.m.s.
 - DP description useful if the decay particles have the same mass

Lines and spots: region of depletion of DP density

Spin	I = 0	I=1		= 2	$I = 1$ $(3\pi^0 \text{ only})$
		(except 3 π^0)	π+ π- π0	other modes	and I = 3
0-	₩η			•	
1+	\odot				0
2-					
3+					
1-	O_{0}	\Box	\odot	\bigcirc	\otimes
2+	\odot	\bigcirc		\bigcirc	\odot
3-	\bigcirc			\bigcirc	\odot

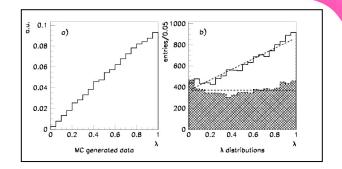
Selecting the ω meson: use of the λ parameter method

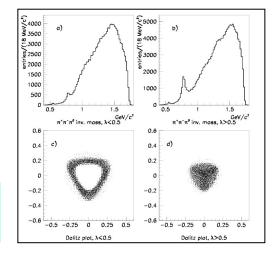
• Statistical selection of the events most likely coming from a ω decay

$$\lambda = \frac{(\overrightarrow{q_1} \times \overrightarrow{q_2})^2}{\alpha (m^2 - \sum_{i} \mu_i^2)^2}$$

- \circ \circ \circ events: λ distribution proportional to λ
- Background events: flat λ distribution
- Signal obtained by subtracting the λ distributions in sides bins on both ω sides, within a given interval

ω events populate the centerof the Dalitz plot





Spin-Angular part of the amplitude: Spin Formalisms

- Zemach formalism
- Helicity & canonical formalisms
- Moments analysis

Spin formalisms

- Several equivalent descriptions:
 - Tensor formalisms
 - Simple and fast for small L and S
 - Non relativistic (Zemach)
 - Covariant form (Rarita-Schwinger)
 - Spin-projection formalisms
 - Quantization axis chosen + proper rotations
 - Efficient also for large L and S
 - Helicity formalism (good for half-integer spins)
 - Transversity formalism
 - Canonical (orbital) formalism

Once a formalism is chosen...

- Definition of a single particle state of given spin S
- Definition of a two-particle state in its center-of-mass system and of the relative angular momentum L between particles
- Transformation to states of given total angular momentum J
- Apply symmetry conservation and kinematic constraints to the amplitudes

Tensor formalism: non-relativistic Zemach tensors

- Zemach (non-covariant) treatment:
 - \circ Every angular momentum L is described by a symmetric and traceless tensor of rank L in 3-D phase space
 - Written in the rest frame of every di-particle frame, without any boost to a general reference frame

```
L = 0 \Rightarrow A^0 = 1

L = 1 \Rightarrow A^1_i = q_i

L = 2 \Rightarrow A^2_{ij} = 3/2 q_i q_i - 1/2 |q_i|^2 \delta_{ij}
```

- Coupling of spins and orbital angular momenta:
 - Tensor algebra and contractions
- These amplitudes are not Lorentz invariant

How to build covariant tensors

$$J^P \longrightarrow j^p + c$$
 $j^p \longrightarrow a + b$

```
Velocity of the R resonance of mass m^2 = (a+b)^2:
                 u_{\mu} = (a_{\mu} + b_{\mu})/m
(u^2 = 1: time-like vector)
```

- A spin rank-1 tensor has no time component in the resonant rest frame: it only represents the behaviour of a particle at rest under rotations
 - S_{μ} : space like vector $\Rightarrow S_{\mu}u^{\mu} = 0$
- Spin-1 covariant tensor: $S_{\mu} = q_{\mu} (qu)u_{\mu}$ o $q_{\mu} = a_{\mu} b_{\mu}$ break-up momentum (in R = a+b cms) o S norma is negative: $S^2 = q^2 (qu)^2 = -|q_R|^2$
- Spin-2 covariant tensor: $T_{\mu\nu} = S_{\mu}S_{\nu} 1/3 S^2(g_{\mu\nu} u_{\mu}u_{\nu})$ T is traceless and $T^2 > 0$

Properties of covariant tensors

- **General rule**: orthogonalization of the 4-velocity and the spin or the angular momentum of the particle
 - Tensor contraction
 - In the J^P rest frame:
 - $q_{\mu} = c_{\mu} (a+b)_{\mu}$ break-up momentum
 - $u_{\mu} = (1, 0)$ cms velocity
- Spins and orbital momentum have the same representation
- For a particle of spin s: rank-s tensor
 - $(p^2+m^2) \Phi_{\mu 1 \mu 2...\mu s} = 0$
 - With the following symmetry, tracelessness and orthogonality properties:

 - $\Phi_{...\mu i...\mu j...} = \Phi^{...\mu j...\mu i}$ $g_{\mu i \mu j} \Phi^{...\mu i...\mu j...} = 0$ $p_{\mu i} \Phi^{...\mu i...} = 0$

Combination of covariant tensors

 Tensors are composed following the quantum-mechanical rules of angular momentum coupling:

1 ⊕ 1 = 0	$S = A_{\mu}B^{\mu}$
1 ⊕ 1 = 1	$S_{\mu} = \varepsilon_{\mu\nu\rho\sigma} A^{\nu} B^{\rho} u^{\sigma}$
1 ⊕ 1 = 2	$T_{\mu\nu} = \frac{1}{2}(A_{\mu}B_{\nu} + A_{\nu}B_{\mu})$

Covariant tensors vs angular distributions

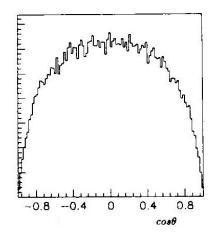
 The angular distributions of the particles emitted in a decay of a resonance correspond to the square moduli of the amplitudes

- Covariant formalism takes automatically into account relativistic effects
 - More important the smaller the mass of the resonant system (larger effect of Lorentz boost)
 - Relativistic vs non-relativistic angular distributions are different
 - Important effect with large statistics

Practical application of covariant tensors – example 1

- $\bar{p}p(^{3}S_{1}) \rightarrow \rho^{0}\pi^{0}, \ \rho^{0} \rightarrow \pi^{+}\pi^{-}$
 - Initial state quantum numbers: 0⁻(1⁻⁻)
 - o Final state:

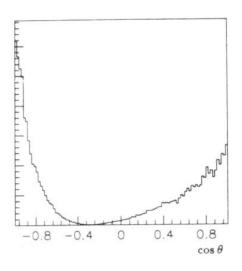
 - $\pi = 1^{-}(0^{-+}), p_0 \text{ momentum}$
 - $P(\rho^0 \pi^0) = (-1)^L \Rightarrow L(\rho^0 \pi^0)$ must be odd == 1
 - Tensors:
 - $\rho^{0} \text{ spin} : R_{\mu} = q_{\mu} (q \cdot u)u_{\mu} \text{ (spin 1)}$ $q = p_{+} p_{-}, u = \frac{1}{2} * (p_{+} + p_{-})/(p_{+} + p_{-})$



- Intermediate state: $L(\rho \pi^0)$: $L_{\mu} = r_{\mu} (r \cdot v)v_{\mu}$ (relative angular momentum L = 1)
 - $r = p_0 p_{\rho}, v = (p_0 + p_{\rho})/\sqrt{s}$
- Spin amplitude of the reaction: $1 \oplus 1 = 1$
 - $A = (p_{+} p_{-}) \times (p_{0} p_{\rho}) = (p_{+} p_{-}) \times p_{0}$
 - o $\sin^2\theta$ distribution for the angle between $(p_+ p_-)$ and p_0

Practical application of covariant tensors – example 2

- $\bar{p}p(^{1}S_{0}) \rightarrow \bar{K}^{0}K^{*0}$, $K^{*0} \rightarrow K^{+}\pi^{-}$ (particles of different masses)
 - Initial state quantum numbers: ⁻ (0⁻⁺)
 - Final state:
 - $\overline{K}^0 = \frac{1}{2} (0^-)$
 - **K** $^{0*} = \frac{1}{2} (1^{-})$, momentum p^{*}
 - $\pi = 1^{-}(0^{-+})$
 - $P(\overline{K^0}K^{0*}) = (-1)^L \Rightarrow L(\overline{K^0}K^{0*})$ must be odd == 1
 - Tensors:
 - $K^{0*} \text{ spin} : K_{\mu} = q_{\mu} (q \cdot u)u_{\mu} \text{ (spin 1)}$ $q = p_{+} p_{-}, u = \frac{1}{2} * (p_{+} + p_{-})/(p_{+} + p_{-})$
 - Intermediate state: $L(\overline{K}^0K^{0^*})$: $L_{\mu} = r_{\mu} (r \cdot v)v_{\mu}$ (spin 1) • $r = p_0 - p^*, v = (p_0 + p^*)/\sqrt{s}$
 - Spin amplitude of the reaction: $1 \oplus 1 = 0$
 - $A = (p_+ p_-) \times (p_0 p^*) = (p_+ p_-) \times p^*$
 - \circ $(1 + z^2)\cos^2\theta$ distribution for the angle between $(\mathbf{p}_+ \mathbf{p}_-)$ and \mathbf{p}^*



Practical application of covariant tensors – example 3

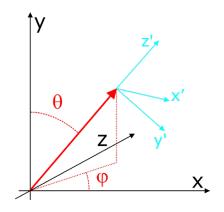
- $\bar{p}p(^{1}S_{0}) \rightarrow f_{2}(1270)\pi^{0}, f_{2}(1270) \rightarrow \pi^{+}\pi^{-}$
 - Initial state quantum numbers: 1⁻(0⁻⁺)
 - Final state:
 - $f_2 = 0^+ (2^{++})$ $\pi = 1^- (0^{-+})$ $P(f_2\pi^0) = (-1)^L \Rightarrow L(f_2\pi^0) \text{ must be even } = 2$ $S(f_2) = 2 \Rightarrow \ell(\pi^+\pi^-) = 2$
 - Tensors:
 - $f_2 \text{ spin}: T_{\mu\nu} = \sqrt{3/2} (S_{\mu}S_{\nu} + 1/3 (g_{\mu\nu} w_{\mu}w_{\nu})) \text{ (spin 2)}$ $\mathbf{w} = (\mathbf{a} + \mathbf{b})_{\mu}/\mathbf{m}_{R}$
 - Intermediate state $L(f_2\pi^0)$: $M_{\rho\sigma} = \sqrt{3/2} (N_{\rho}N_{\sigma} + 1/3 (g_{\rho\sigma} v_{\rho}v_{\sigma}))$ (spin 2) • $v = (p_a + p_b + p_c)/\sqrt{s}$
 - Spin amplitude of the reaction: $2 \oplus 2 = 0$
 - $A = \varepsilon_{\mu\nu\rho\sigma} T_{\mu\nu} M^{\rho\sigma}$ • $1 + z^2/3 + z^2\cos^2\theta + z^4(\cos^2\theta - 1/3)^2 \approx (Y_2^0(\theta))^2$ distribution

Summary: angular distributions

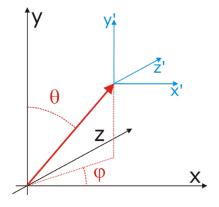
- Spin 0 resonance
 - Flat angular distribution, in any wave (defined by the relative angular momentum)
- **Spin 1 resonance**, with $z = p/\sqrt{s}$:
 - S wave: $(1+z^2\cos^2\theta)$ example: $\varphi/\omega/\rho$ production from spin singlet ${}^{1}P_{1}$
 - P wave:
 - $J=0: (1+z^2) \cos^2\theta$
 - $J=1: sin^2\theta$ example: $\varphi/\omega/\rho$ production from spin triplet 3S_1
 - $J=2: \frac{1}{2} + (\frac{1}{6} + \frac{2}{3}z^2)\cos^2\theta$
 - o D wave:
 - $J=1: 1/6+ (\frac{1}{2}+\frac{2}{3}z^2)\cos^2\theta$
 - $J=2: \frac{3}{4} (1 \cos^2 \theta)$
 - **Spin 2 resonance**
 - S wave:

Spin-Projection formalisms

- Different choices of the quantization axis
- All single particle states are derived from the basic states through a Lorentz transformation and a Wigner rotation



Helicity: new axis z' parallel to momentum



Canonical: new axis z' rotated

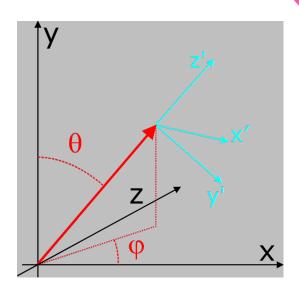
Single particle state: Helicity

$$|\vec{p},\lambda\rangle$$

- 1) z-axis rotated around the intermediate state momentum direction
- 2) Lorentz boost along the momentum

$$\widehat{R}|\vec{p},\lambda\rangle = \left|\widehat{R}\vec{p},\lambda\right\rangle$$

$$|\vec{p},\lambda\rangle = \sum_{m} D_{m\lambda}^{j}(R_0) |\vec{p},\lambda\rangle$$



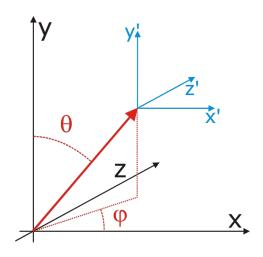
$$\hat{R}_0 = \hat{R}_0(\theta, \phi, 0)$$

Single particle state: Canonical formalism

$$|\vec{p}, jm\rangle \equiv L\vec{p}|jm\rangle = \hat{R}_0 L_z \hat{R}_0^{-1}|jm\rangle$$

- 1) rotation of the momentum vector around the z-axis
- 2) Lorentz boost along z
- 3) z-axis rotated back to the momentum direction

$$\widehat{R}|\vec{p},m\rangle = \sum_{m'} D_{m'm}^{j} |\widehat{R}\vec{p},m\rangle$$



$$\vec{e}_{\vec{p}} = \hat{R}_0(\theta, \phi, 0)\vec{e}_z$$

Two-particle state: Helicity

Built from single particle states (back-to-back)

$$|\Omega_{s}s\lambda_{s}t\lambda_{t}\rangle\equiv\frac{1}{4\pi}\sqrt{\frac{p_{s}}{m}}\hat{R}_{0}[|L_{z}p_{s}|s\lambda_{s}\rangle|L_{z}p_{t}|t\lambda_{t}\rangle]$$

$$|JM\lambda_s\lambda_t\rangle \equiv \sqrt{\frac{2J+1}{4\pi}}\int d\Omega \ D_{M,\lambda_s-\lambda_t}^{J*}|\Omega,s\lambda_st\lambda_t\rangle$$

Wigner rotation functions

- Intrinsically non-covariant
 - D functions expressed in each resonance rest frame
 - p/m dependence

Two-particle state: Canonical

 Built from single particle states (back-to-back)

•
$$s \oplus t = S$$

•
$$L \oplus S = J$$

$$|\Omega_s^0 s m_s t m_t \rangle \equiv \frac{1}{4\pi} \sqrt{\frac{p_s}{m}} [|L \vec{p}_s | s m_s \rangle |L \vec{p}_t | t m_t \rangle]$$

$$|\Omega, sm_{s}\rangle = \sum_{m_{s}, m_{t}} \langle sm_{s}tm_{t}|Sm_{s}\rangle |\Omega, sm_{s}tm_{t}\rangle$$

$$\left|L_{m_L}S_{m_S}\right\rangle = \int d\Omega \ Y_{m_L}^L\left(\Omega\right) \ \left|\Omega, Sm_S\right\rangle$$

$$\left|JMLS\right\rangle = \sum_{m_L,m_S,m_s,m_t} \left\langle Lm_L Sm_S |JM\rangle \left\langle sm_S tm_t |Sm_S\rangle \int d\Omega \ Y_{m_L}^L\left(\Omega\right) \ \left|\Omega_S^0, sm_S tm_t\right\rangle$$

Example 1: $f_2(1270) \rightarrow \pi^+\pi^-$ decay in helicity formalism

Helicity amplitude:

$$A_{\lambda_1\lambda_2}^{JM} = \frac{4\pi}{\rho_s} \langle \Omega_s, s\lambda_s, t\lambda_t | \mathbf{M} | JM \rangle = N_J f_{\lambda_1\lambda_2} D_{M\lambda}^{J*}(\Omega_s)$$

Since $\lambda = \lambda_1 - \lambda_2 = 0$ and J = 2:

$$A_{00}^{2M}(\theta,\phi) = \sqrt{5}\langle 2000|00\rangle\langle 0000|00\rangle f_{00}D_{M0}^{2*}(\theta,\phi)$$

The relevant D Wigner functions are 5:

$$D_{M0}^{2*}(\theta,\phi) = \begin{pmatrix} d_{-20}^{2}(\theta) \ e^{-2i\phi} \\ d_{-10}^{2}(\theta) \ e^{-i\phi} \\ d_{00}^{2}(\theta) \\ d_{10}^{2}(\theta) \ e^{i\phi} \\ d_{20}^{2}(\theta) \ e^{2i\phi} \end{pmatrix}$$
36

Example 1: $f_2(1270) \rightarrow \pi^+\pi^-$ decay in helicity formalism (cont.'ed)

The intensity is given by

$$I(\theta) = \sum_{M,M'} A_{00}^{2M}(\theta, \phi) \, \rho_{MM'} A_{00}^{2M'*}(\theta, \phi)$$

Being the spin density matrix

$$\rho = \frac{1}{5} \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}$$

$$I(\theta) = |f_{00}|^2 \left(\frac{15}{4} \sin^2 \theta + 15 \sin^2 \theta \cos^2 \theta + 5 \left(\frac{3}{2} \cos^2 \theta - \frac{1}{2} \right)^2 \right)$$

The amplitude is a constant:

$$I(\theta) = |f_{00}|^2$$

Example 2: $\bar{p}p(0^{-+}) \rightarrow f_2(1270)\pi^0 \rightarrow \pi^+\pi^-\pi^0$ in helicity formalism

• Helicity amplitude for each of the angular momenta $(f_2 \text{ spin and } L(f_2 \pi^0) = 2)$:

$$A_{\lambda_1 \lambda_2}^{JM} = N_J f_{\lambda_1 \lambda_2} D_{M \lambda}^{J*}(\Omega_S)$$

- For the π^0 spin: $|f_{00}|^2 = const.$
- For the relative angular momentum between f_2 and π^0 :

$$A_{00}^{00}(\Omega_{f_2\pi^0}) = \langle 2020|00\rangle\langle 2000|00\rangle f_{00}D_{00}^{0*}(\theta,\phi) = \sqrt{\frac{1}{5}\cdot 1\cdot 1}$$

For the f_2 spin (zero helicity):

$$A_{00}^{20}(\theta,\phi) = \sqrt{5}\langle 2000|00\rangle\langle 0000|00\rangle f_{00}D_{00}^{2*}(\theta,\phi) = f_{00}Y_0^2$$

Example 2: $\bar{p} p(0^{-+}) \rightarrow f_2(1270)\pi^0 \rightarrow \pi^+\pi^-\pi^0$ in helicity formalism (cont.'ed)

Put everything together to get the total intensity:

$$I(\theta) = \left| A_{00}^{00}(\theta, \phi) \rho_{00} A_{20}^{00}(\theta, \phi) \right|^{2}$$
$$= 5|f_{00}f_{20}|^{2} \left(\frac{3}{2}\cos^{2}\theta - \frac{1}{2} \right)^{2}$$

to be compared with the example for the application of tensor formalism

Covariant tensors vs helicity

- The two approaches are equivalent if:
 - The helicity amplitude is written in covariant form as well
 - The covariant tensor is properly normalized
- Tensor moduli:
 - \circ Kinematic factors depending on p and q
 - Centrifugal barrier functions
 - Almost constant for sharp (narrow) resonances
 - Slowly varying functions of the momenta
 - They do not affect largely angular distributions
 - ⇒ inserted in the dynamical part of the amplitude

Summary: key points of spin formalisms

Tensor formalism

- Easy to handle and to code for INTEGER angular momenta
 - Half-integers: more complicated tensors
 - Use of non-normalized tensors allows centrifugal barrier functions to be omitted in the energy-dependent parte of the amplitude

Helicity formalism

- based on Wigner rotation functions + helicity couplings
- Half integer spin treated in a simpler way

Canonical formalism

 based on spherical armonics series + Clebsch-Gordan factors for momentum couplings

Always use covariant formulations (whenever possible)

Moments analysis I

- Based on a Fourier decomposition of the final state, in each invariant mass bin of the final state system
 - d functions can be expanded in spherical harmonics
- Spherical harmonics moments: directly related to
 - amplitudes
 - helicity partial waves and relative phases
- The density matrix gets absorbed in a spherical moment
- $\geq z$ axis in the production plane:
 - Angular distribution of a 2-body system: sum of the real parts of spherical harmonic moments

$$I(t, M, \theta, \phi) = N \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \langle \operatorname{Re} Y_{l}^{m} \rangle \operatorname{Re} Y_{l}^{m} (\theta, \phi)$$

Moments analysis II

- A new set of real coefficients t_l^m can be obtained inverting the last equation \circ They depend on:
 - Momentum transfer t
 - Mass of the 2-body system M
- t_l^m related to spherical harmonics by

$$\langle \operatorname{Re} Y_l^m \rangle = \frac{1}{N} \varepsilon_l^m t_l^m$$

$$t_l^m = \left\langle D_{M0}^L(\theta, \phi, 0) \right\rangle$$

$$\varepsilon_l^m = \begin{cases} 0 & \text{if } m = 0\\ 1/2 & \text{if } m \neq 0 \end{cases}$$

 t_l^m obtained by a fit $\Rightarrow \langle Y_l^m \rangle \Rightarrow$ total amplitudes

Example: application of moments analysis

- Useful tool to gather further information, especially when
 - No evident signal in the Dalitz Plot
 - No crossing bands

