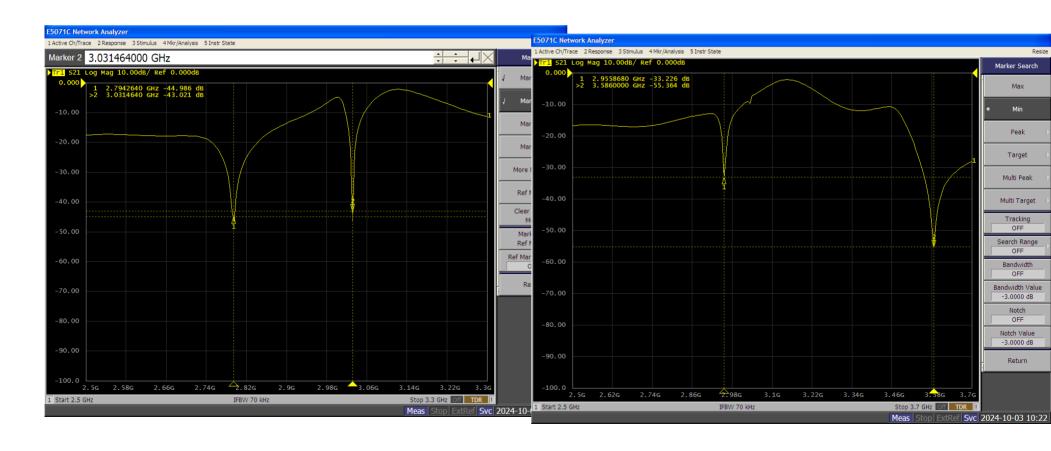
Cavità risonante con lattina


Utilizzato VNA (non scheda ZCU111 perche'

frequenza 3GHz troppo alta)

- Inserito oscillatore LC all'interno della lattina.
- I due terminali dell'oscillatore sono collegati con le porte del VNA)
- Da provare con due oscillatori LC

Si nota il Mode Splitting dovuto all'accoppiamento

Misure possibili con scheda programmabile

- La possibilita' di modulare via software le caratteristiche del segnale a microonde (inviluppo, ampiezza, frequenza, fase, durata etc.) permette di fare diverse misure "quantum-style":
 - Cavity ring-down: si invia un breve impulso e si misura il decadimento del segnlale: misura di Q, delle perdite della cavita', delle distorsioni (non linearita'), rumore di fase

- Ramsey-like: due impulsi separati da evoluzione libera. Si misura la differenza di risonanza della cavita' (dovuta per esempio a drift termico)
- Two-tone spectroscopy: un tono per eccitare l'LC, l'altro per misurare la risposta della cavita' (variazione della frequenza di risonanza, del Q, della fase) in base al loro accoppiamento

Conclusione

 Usare una scheda RF programmabile con una cavita' risonante e un risonatore (o due) classico LC permette di prendere confidenza con tecniche di misura simili a quelle che si usano per i qubit