RDO Full/LpGBT model considerations

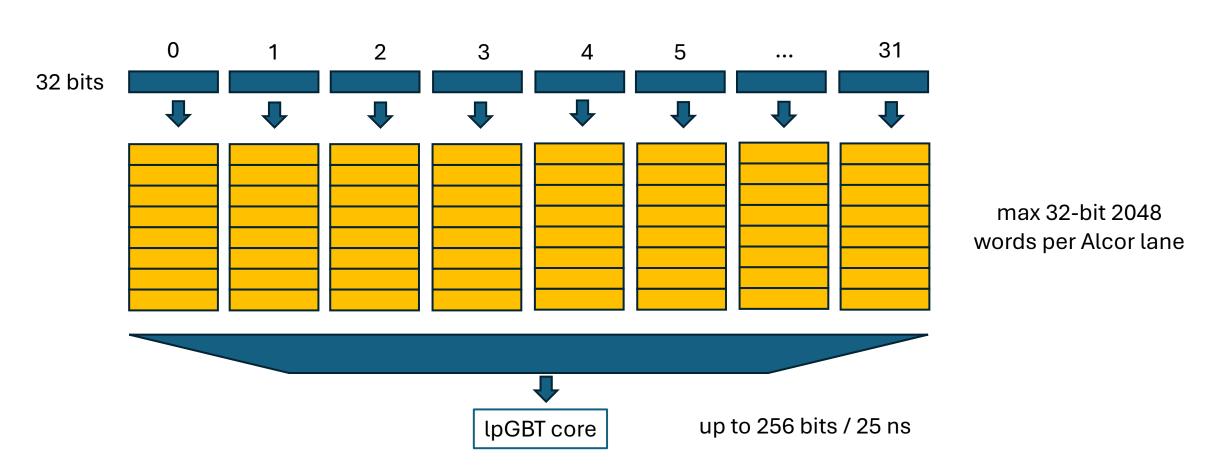
Sandro Geminiani, Davide Falchieri

ALCOR-RDO-DAM system (small) recap

ALCOR:

- ALCOR64 produces timestamps for 64 SiPMs.
- The digital system is composed of 8 lanes serving 8 SiPM each.
- **EIC mode**: ALCOR64 **sampling frequency 394 MHz**=4x98.5 MHz (bunch crossing frequency).
- Rollover time range: \sim 12 us \rightarrow unordered datastream to the RDO.

RDO:


- RDO allows to configure via SPI, read and also align the ALCOR chips
- RDO reads 4 ALCOR64s (4chips x 8lanes = 32 differential data lines → RDO FIFO buffers)
- VTRx+: 10.24 Gb/s Uplink and 2.56 Gb/s Downlink
- Clock reconstruction + other chips control and configuration via I2C.

DAM:

- LINK to GTU for CLOCK source (Rev tick, ecc..) to the RDO
- Data buffering from the RDO + Data reduction using ML
- Each DAM serves up to 42 RDO links

XCAU15P RAM resources

BRAM: 5.1 Mbits distributed RAM: 2.5 Mbits

lpGBT / FULL core

FEC12:

96 bits/BC

112 bits/BC

5.12 Gbps

payload

FEC12: FEC5:

FEC5:

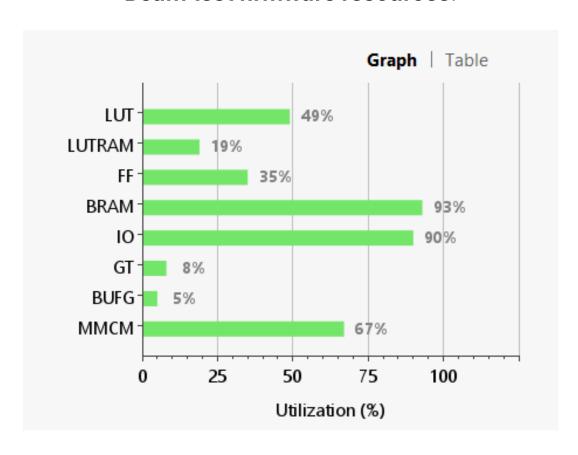
192 bits/BC

224 bits/BC

10.24 Gbps

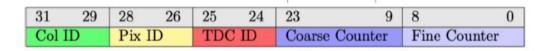
FULL core

payload


FULL:

256 bits/BC

10.24 Gbps


Current situation with IPbus

Beam test firmware resources:

ALCOR lane throughput

ALCOR data format

- **CTRL word frequency**: 0.6 kHz = 16 ctrlWord x Rollover frequency
- EIC Collision rate: ~500 kHz
- DCR: 3-300 kHz

Lane MAX word rate (500 kHz estimated) 8 MHz Considering a **full lane firing**: 8.0 MHz = 500 kHz x 8 SiPMs x 2 words

Considering a **full lane DCR**:
4.8 MHz = 300 kHz x 8 SiPMs x 2 words

ALCOR MAX word rate (500 kHz estimated) 64 MHz

RDO Readout models:

WORST DCR case: **300 KHz**

ALCOR possible latency: 128 clock cycles

ALCOR SR mode

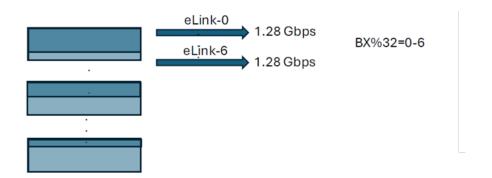
Uplink payload bandwidth: **8.96 Gb/s** (FEC5)

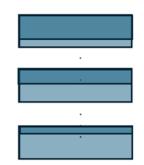
No data reduction:

31	29	26	23		8
30	27	24	22	21 9	0
FEB	Col	Pix	TDC		
ID	ID	ID	ID	(short) Coarse Counter	Fine Counter

Thoughts on mapping DAQ dataflows on eLinks (2) – No data reduction

1.Direct Mapping (24 channels):


- 1. The first 24 ALCOR column streams (e.g., from FEB 0, 1, and 2) are mapped directly, one-to-one, to **eLinks 0 through 23**.
- 2. FEB 0, Col 0 -> eLink 0
- 3. ...
- 4. FEB 2, Col 7 -> eLink 23


2. Multiplexed Mapping (8 sources into 4 channels):

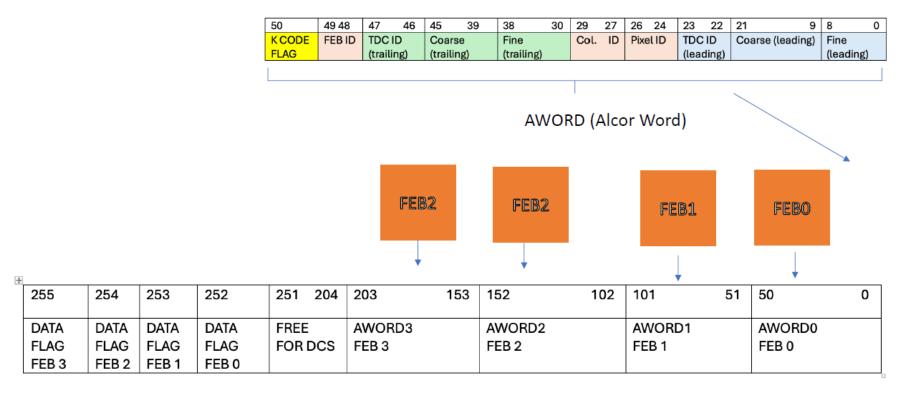
- 1. The remaining 8 ALCOR column streams (all from FEB 3) must be merged in pairs to be sent over the final 4 eLinks.
- 2. The RDO's FPGA will need logic to interleave or combine the data from two input streams into one output stream.
- 3. FEB 3, Col 0 + Col 1 -> eLink 24
- 4. FEB 3, Col 2 + Col 3 -> eLink 25
- 5. FEB 3, Col 4 + Col 5 -> eLink 26
- 6. FEB 3, Col 6 + Col 7 -> eLink 27
- Requisites for RDO firmware
 - Some little processing to ALCOR data format (shrink coarse counter, prepend FEB ID)
 - The FPGA firmware needs a multiplexer (MUX) block. This logic takes two 160 Mbps input streams
 (assuming the 320 Mbps eLink bandwidth is sufficient for two merged streams) and outputs a
 single 320 Mbps stream.

With data reduction:

	49 48	47 46	45 39	38 30	29 2	27	26 24	23 22	21 9	8 0
ı	FEB ID	TDC ID	Coarse	Fine	Col.	ID	Pixel ID	TDC ID	Coarse (leading)	Fine
		(trailing)	(trailing)	(trailing)				(leading)		(leading)

RDO Readout models (1):

WORST DCR case: 300 KHz


ALCOR possible latency: 128 clock cycles

ALCOR SR mode

Uplink payload bandwidth: **8.96 Gb/s** (FEC5)

NO e-link

Hybrid model:

- this scheme could allow for lpGBT in hybrid mode so with FEC5 or FEC12
- push data from each FEB
- potentially we can send less bits (FEB ID is positional) but DAM should add it then

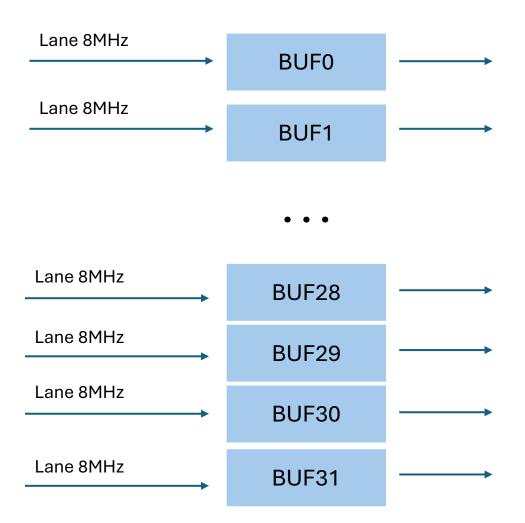
RDO Readout models alternatives:

NO e-link

aword

ŧ	50	49 48	47	46	45	39	38	30	29	27	26	24	23	22	21	9	8	0
H	K CODE	FEB ID	TDC ID Coarse		se	Fine	ne Col. ID		Pixe	elID	TDC ID		Coarse (leading)		Fine			
F	FLAG		(trailir	ng)	(traili	ng)	(trailing)						(lead	ding)			(leading	.)

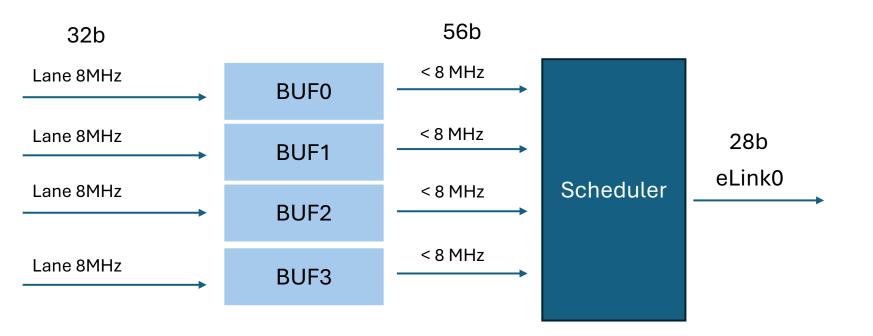
4	255	254	253	252	251	204	203	153	152	102	101	51	50	0
Ī	DATA	DATA	DATA	DATA	FREE		AWORD3		AWORD2		AWORD1		AWORD0	
	FLAG	FLAG	FLAG	FLAG	FOR D	ocs	FEB 3		FEB 2		FEB 1		FEB 0	
	FEB 3	FEB 2	FEB 1	FEB 0										


from any FEB#

RDO buffering stage

e-link

(Data reduction):



- BUF stage: each buffer waits for its falling edge data (possible latency 128 clock cycles) to generate the 51bit word (ctrl word sent directly).
- Scheduler with only 8 eLinks (64 MHz):
 - Sending early timestamps first.
 - Check all the FIFOs occupancy.

RDO buffering stage

(Data reduction):

e-link

WORST DCR case: 300 KHz

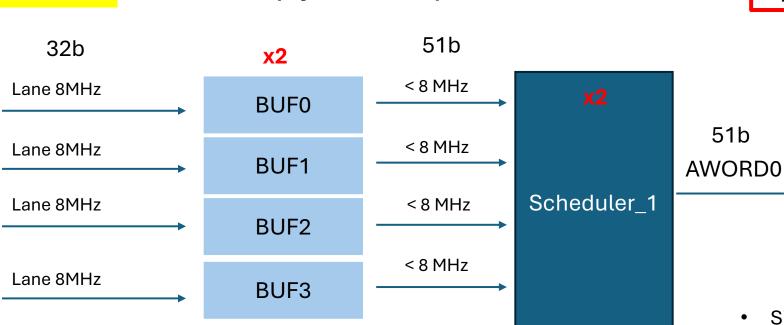
ALCOR possible latency: 128 clock cycles

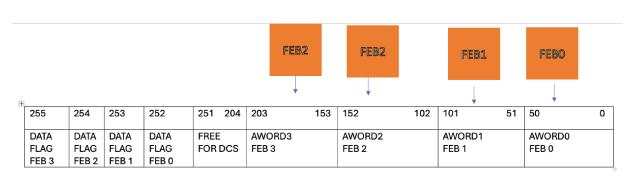
ALCOR SR mode

Uplink payload bandwidth: **8.96 Gb/s** (FEC5)

Buffer of 512 words:

- 512 rising and 512 falling
- Rising edges waiting for falling ones


The **schedule**r includes:


- Buffer of 512 51b words
- Act on the occupancy and the timestamp to select the lane be read
- If half of the BUF is full, elements with only one word are sent as first object to the DAM
- A falling edge is directly sent to the DAM for evaluation

RDO buffering stage

NO e-link

(Hybrid model):

WORST DCR case: 300 KHz ALCOR possible latency: 128 clock cycles

ALCOR SR mode

Uplink payload bandwidth: **8.96 Gb/s** (FEC5)

- Similar to the previous model.
- Segmentation for each FEB, BUT if some FEB is more noisy could be an issue
- Similar memory resources as DATA reduction.

Conclusions and Outlook

- 1. eLink vs NO eLink models need to be evaluated, we prefer to go without eLinks (also suggested by Filippo)
- 2. Simulations on the models are needed before taking a decision
- 3. We plan to implement a lpGBT FPGA core on the RDO to get some experience with this core