

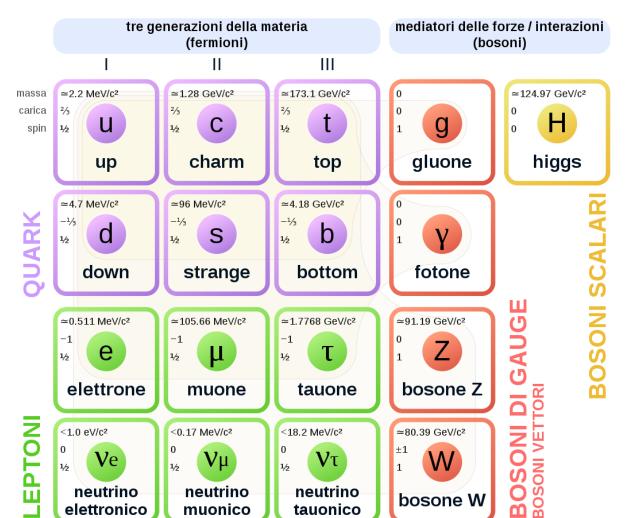
UNIVERSITÀ DEGLI STUDI DI MILANO

Misura del rapporto di efficienza di identificazione del fotone tra dati e simulazione Monte Carlo per il Run2 dell'esperimento ATLAS ad LHC

Tesi di Laurea Triennale in Fisica Federico Marletta

Relatore: Prof. Leonardo Carlo Carminati

Correlatori: Dott. Ruggero Turra, Dott. Laura Nasella


Anno accademico 2024/2025

2

THE REAL PROPERTY OF THE PROPE

Contesto Teorico

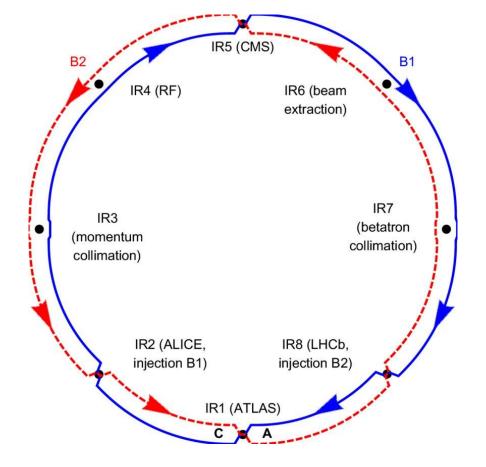
Modello Standard delle Particelle Elementari

Fermioni

- Costituiscono la materia
- Spin ½
- Accompagnati dalla propria antiparticella
- Divisi in <u>Leptoni</u> e <u>Quark</u> in base alle interazioni a cui prendono parte

Bosoni

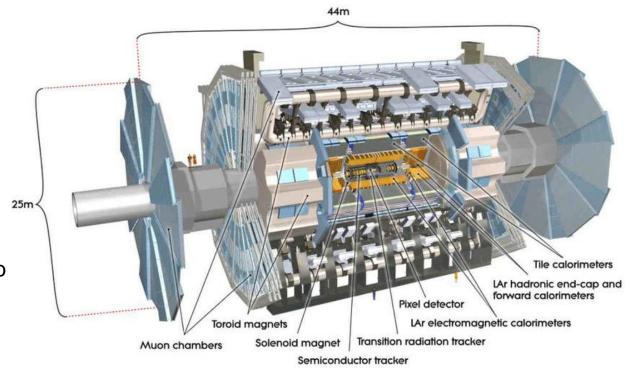
- g: mediatore dell'interazione forte
- γ : mediatore dell'interazione elettromagnetica
- W/Z: mediatori dell'interazione debole
- H: conferisce massa ai bosoni W/Z e ai fermioni


Modello Standard LHC/ATLAS ricostruzione e/ γ Calcolo degli Yield Misura degli SF conclusione

3

LHC

- Acceleratore del CERN
- Collisioni Protone-Protone a \sqrt{s} = 13.6 TeV \Longrightarrow Studio processi fisici descritti dallo SM e ricerche di nuova fisica

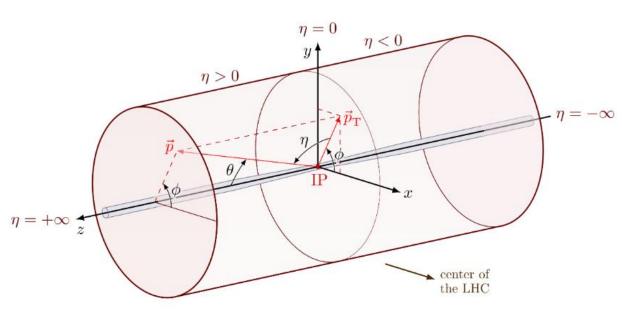


THE RESIDENCE OF THE PROPERTY OF THE PROPERTY

ATLAS

- Sistema di rivelatori:
 - > Inner detector: momento e traiettoria delle particelle cariche
 - Calorimetri: energia di elettroni, fotoni e adroni
 - > Muon Spectrometer: momento dei muoni
- Sistema di coordinate:
 - Origine in corrispondenza di IP
 - Il piano trasversale descritto dalle coordinate r-φ
 - P_T è il momento trasverso su questo piano
 - \triangleright L'angolo θ è definito rispetto all'asse z.
 - Riportato in termini di pseudorapidità:

$$\eta = -\ln \tan \left(\frac{\theta}{2}\right)$$

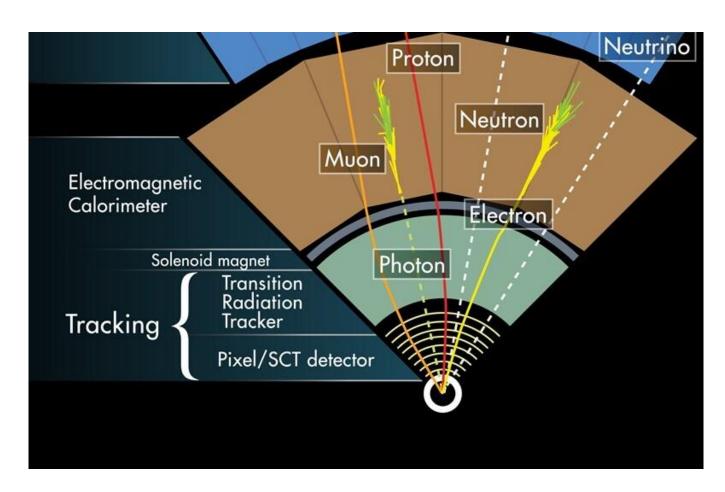


THE RESIDENCE OF THE PROPERTY OF THE PROPERTY

ATLAS

- Sistema di rivelatori:
 - > Inner detector: momento e traiettoria delle particelle cariche
 - Calorimetri: energia di elettroni, fotoni e adroni
 - > Muon Spectrometer: momento dei muoni
- Sistema di coordinate:
 - Origine in corrispondenza di IP
 - Il piano trasversale descritto dalle coordinate r-φ
 - P_T è il momento trasverso su questo piano
 - \triangleright L'angolo θ è definito rispetto all'asse z.
 - Riportato in termini di pseudorapidità:

$$\eta = -\ln \tan \left(\frac{\theta}{2}\right)$$



6

Ricostruzione di Elettroni e Fotoni

- Ricostruzione di depositi energetici nelle celle dei calorimetri - cluster
- Ricostruzione delle tracce
- Abbinamento tracce o vertici di conversione con cluster di energia
- e-
 - definito come un oggetto costituito da un cluster con una traccia associata
- γ può essere di due tipi :
 - Fotone convertito: cluster associato ad un vertice di conversione
 - Fotone non convertito: cluster non associato né ad una traccia, né ad un vertice di conversione.

Modello Standard

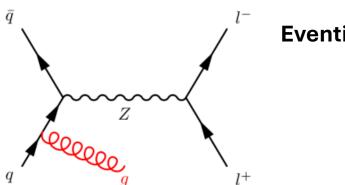
LHC/ATLAS

Identificazione e isolamento dei Fotoni

Per rigettare il contributo di jet adronici (e π^0) ricostruiti erroneamente come fotoni vengono applicati dei criteri di selezione:

- L'identificazione: valuta la compatibilità dello sciame misurato nel calorimetro con quello atteso per un fotone
- L'isolamento: misura quanta energia è depositata attorno al candidato fotone (i fotoni di segnale interessanti sono tipicamente isolati)

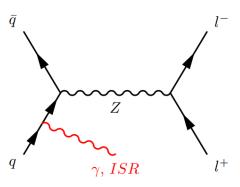
Categorie di selezione:


- Loose: selezione più permissiva; include più candidati ma con maggiore contributo di background.
- Tight: selezione più stringente; garantisce un'elevata purezza del campione.

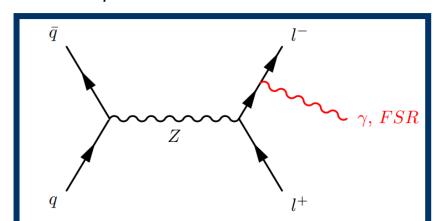
Obiettivi:

- 1. Misurare dell'efficienza della selezione tight per l'identificazione del fotone: $\epsilon_{tight} = \frac{Y_{tight}}{Y_{tot}}$
- 2. Misura degli Scale Factors: $SF = \frac{\epsilon_{tight}^{data}}{\epsilon_{tight}^{MC}}$ \longrightarrow Correzione per le simulazioni

Necessario un campione puro di fotoni: dati RUN2 relativi al decadimento: $Z \to l^+ l^- \gamma$:


Eventi Z+jets

- Dati dei rivelatori
- Eventi di segnale simulato
- Eventi di background Z+jets simulato


Selezioni applicate ai dataset

- $P_T^{\gamma} > 10 \text{ GeV}$
- $|\eta_{\gamma}| \in [0, 1.37] \cup [1.52, 2.37]$
- ph.conflag = 3
- Signal Region
- $m_{ll} < 85 \text{ GeV}$
- $m_{ll\gamma} \in [50, 120] \text{ GeV}$

Caso ISR:

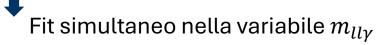
 $m_{ll} \approx m_Z \approx 91 \text{ GeV}$ $m_{ll\gamma} > m_Z$

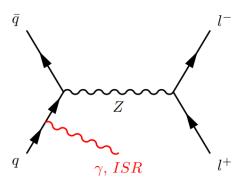
Caso FSR:

 $m_{ll} < m_Z \approx 91 \text{ GeV}$

background $m_{ll\gamma} \approx m_Z$

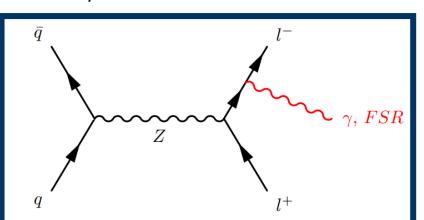
Presente meno


Selezioni applicate ai dataset


- $P_T^{\gamma} > 10 \text{ GeV}$
- $|\eta_{\gamma}| \in [0, 1.37] \cup [1.52, 2.37]$
- ph.conflag = 3
- Signal Region
- $m_{ll} < 85 \text{ GeV}$
- $m_{ll\gamma} \in [50, 120] \text{ GeV}$

PROBLEMA:

Rimane comunque una frazione di background che


bisogna rimuovere per avere un campione puro di fotoni

Caso ISR:

 $m_{II} \approx m_Z \approx 91 \text{ GeV}$ $m_{ll\gamma} > m_Z$

Caso FSR:

 $m_{ll} < m_Z \approx 91 \text{ GeV}$ $m_{ll\gamma} \approx m_Z$

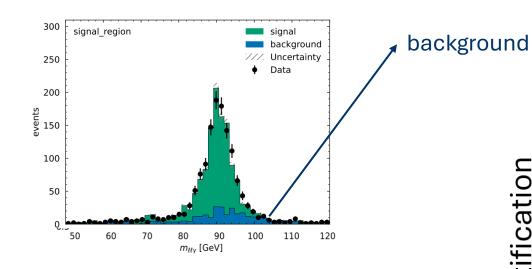
Presente meno background

Modello Standard

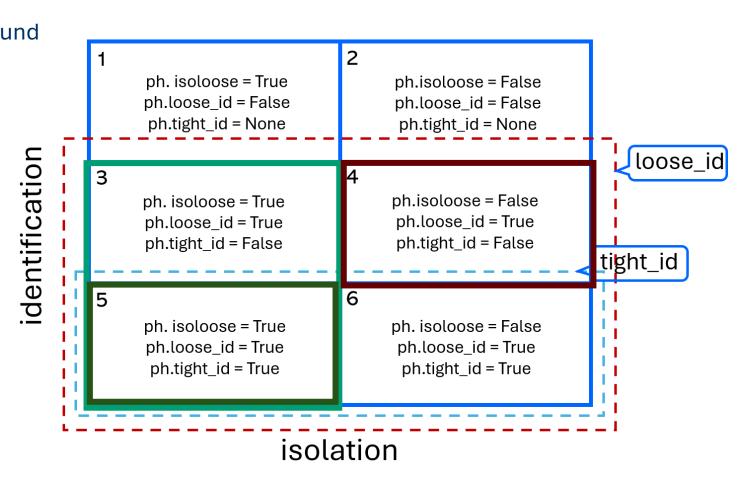
LHC/ATLAS

ricostruzione e/ γ

Calcolo degli Yield


Misura degli SF

conclusione


11

Signal Region e Control Region

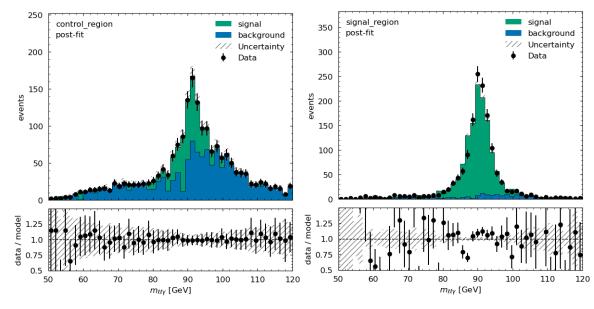
- Per misurare efficienza della selezione tight:
 - > SR a numeratore: regione 5
 - > SR a denominatore: regione 5+3
- Background dalla Control Region 4

Fit simultanei in SR e CR

Binning in $\eta e P_T$

$$\eta = (0, 0.6), (0.6, 1.37), (1.52, 1.81), (1.81, 2.37)$$

$$P_T = (10,\,15),\,(15,\,20),\,(20,\,25),(25,\,30),\,(30,\,35),\,(35,\,40),\,(40,\,50),$$


(50, 70), (70, 150) GeV

Modello statistico SR:

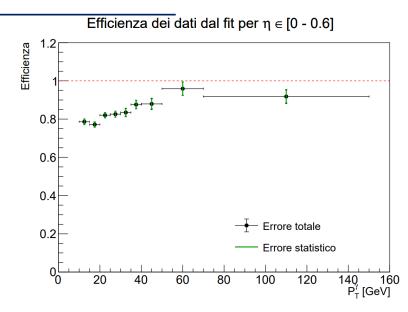
$$N_{SR,i}^{model} = \mu_{SR} \cdot N_{sig,SR,i}^{MC} + \kappa_{bkg} \cdot \gamma_i \cdot N_{CR,i}^{data}$$

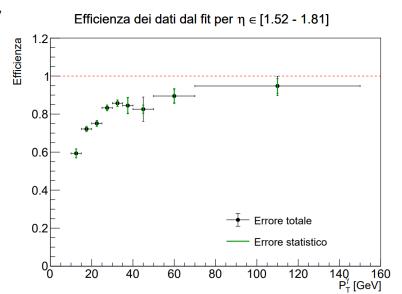
Modello statistico CR:

$$N_{CR,i}^{model} = \overbrace{\mu_{CR}}^{=} \cdot N_{sig,CR,i}^{MC} + \gamma_i \cdot N_{CR,i}^{data}$$

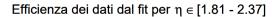
POSTFIT					
Canale	Campione	Yield	Errore		
CR	Background	1275.0542	± 43.0632		
CR	Segnale	581.2748	± 24.1096		
SR	Background	187.9898	± 23.3245		
SR	Segnale	1269.1621	± 40.3163		

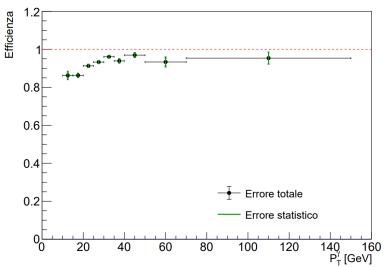
$$\mu_{SR} = 1.1145 \pm 0.0354$$
 $\kappa_{bkg} = 0.1474 \pm 0.0186$



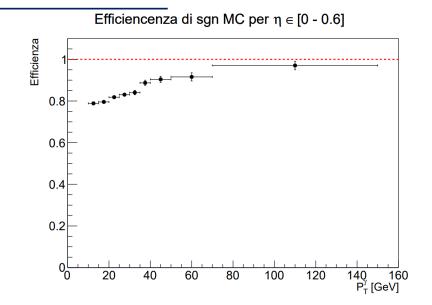

Efficienza dei dati

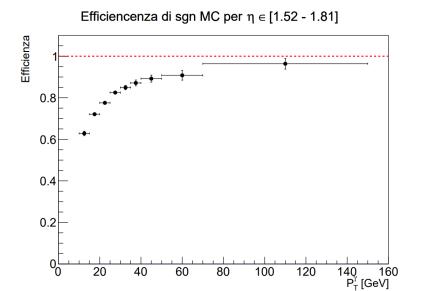
- Calcolo Efficienza: $\epsilon_{tight,i}^{data} = \frac{Y_{tight,i}^{data}}{Y_{tot,i}^{data}}$
- Errore statistico: σ_{stat}^{data}

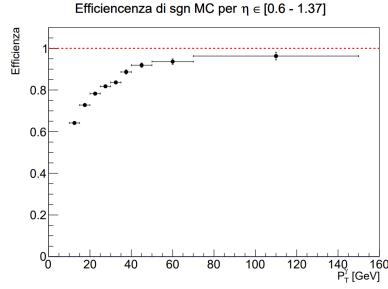

Errori sistematici:

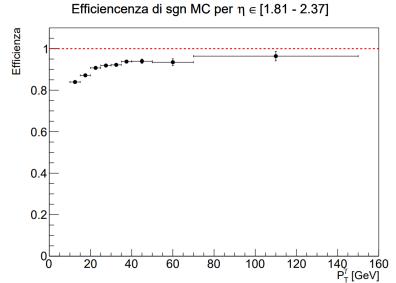

- 1. $m_{lly} \in [50, 120] \text{ GeV}$
 - Scelta $m_{ll\gamma} \in [55, 115] \, \mathrm{GeV}$
- 2. Regione 4 come CR
 - Scelta regione 2 come CR

Efficienza del Monte Carlo

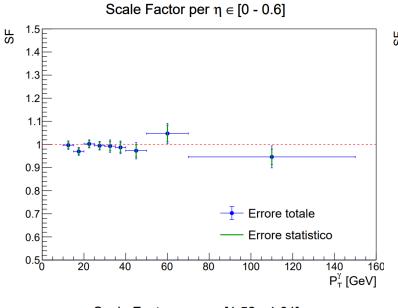

Eventi di decadimento simulati con MC

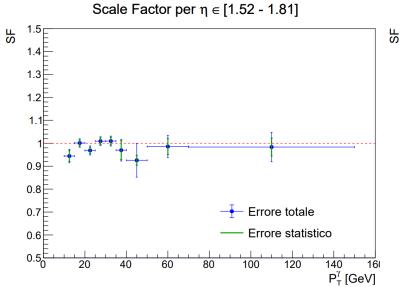


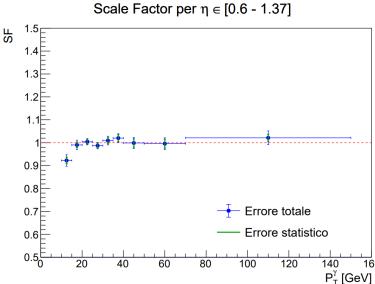

SR a numeratore: $Y_{tight,i}^{MC}$

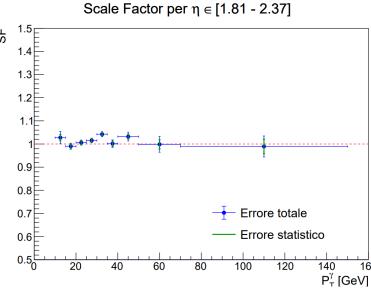

SR a denominatore: $Y_{tot,i}^{MC}$

 \rightarrow Errore statistico: $\sigma_{stat,i}^{MC}$


Misura Scale Factors


$$SF_i = \frac{\epsilon_{tight,i}^{data}}{\epsilon_{tight,i}^{MC}}$$


Errori su SF:


- Statistico su ϵ_{tight}^{data}
- Sistematico su ϵ_{tight}^{data}
- Statistico su ϵ_{tight}^{MC}

Sistematico su SF

Conclusioni

- Misura dell'efficienza di identificazione della selezione tight nei dati relativi al decadimento: $Z \to l^+ l^- \gamma$,
- Misura di SF:
 - valori compatibili con 1 entro σ_{tot}^{SF}
 - σ_{tot}^{SF} varia da 0.66% 7.75%
 - σ_{tot}^{SF} composto da:
 - ightharpoonup Componente statistica: proveniente da σ_{stat}^{data} sull'efficienza, risulta dominante a basso P_T
 - \triangleright Componente sistematica: proveniente da σ_{sist}^{data} e dallo σ_{stat}^{MC} , risulta dominante a alto P_T
 - > Il contributo dominante all'errore sistematico è dovuto alla scelta della CR per la descrizione del background

Applicazioni:

- Analisi che coinvolgono fotoni nello stato finale
- Ricerca della verifica sperimentale di HH $\rightarrow \gamma \gamma b \bar{b}$, previsto da MS

Modello Standard LHC/ATLAS ricostruzione e/ γ Calcolo degli Yield Misura degli SF conclusione 17

Grazie per l'attenzione

Backup Slides

INDICE

1) Il large Hadron Collider - LHC

2) Il rivelatore ATLAS

3) Ricostruzione di Elettroni e Fotoni con il rivelatore ATLAS

4) Algoritmi di classificazione con Machine Learning

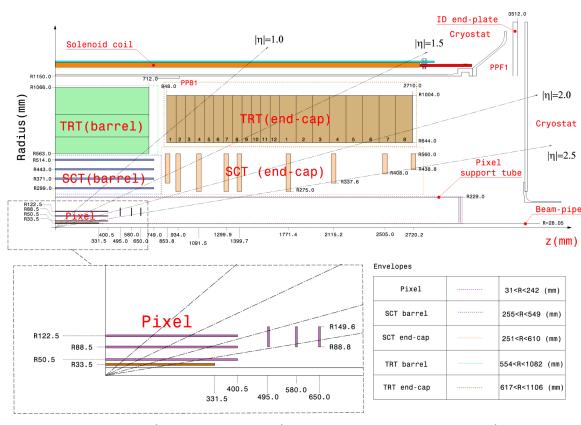
Classificazione di Elettroni e Fotoni

6) Conclusioni

Inner Detector

Pixel:

Modello Standard


 Quando una particella carica passa attraverso il silicio, ionizza gli atomi del materiale, creando coppie elettronelacuna. Questi segnali elettrici vengono raccolti dai pixel e convertiti in dati digitali che rappresentano il percorso della particella

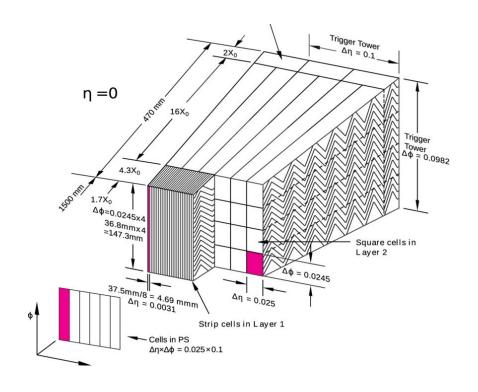
SCT

- Simile al Pixel Detector, le particelle ionizzano il silicio creando coppie elettrone-lacuna. Le strisce di silicio, disposte perpendicolarmente tra loro, raccolgono questi segnali per tracciare il percorso della particella.

TRT

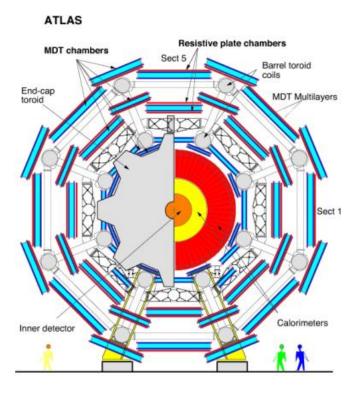
 Quando una particella carica passa attraverso i tubi, provoca ionizzazione del gas. I segnali elettrici generati vengono raccolti dai fili centrali nei tubi. Inoltre, le particelle relativistiche producono radiazione di transizione quando attraversano i materiali di rivestimento, che può essere rilevata per distinguere tra particelle leggere e pesanti.

Rappresentazione schematica del Layout del Tracciatore Interno – Inner Detector

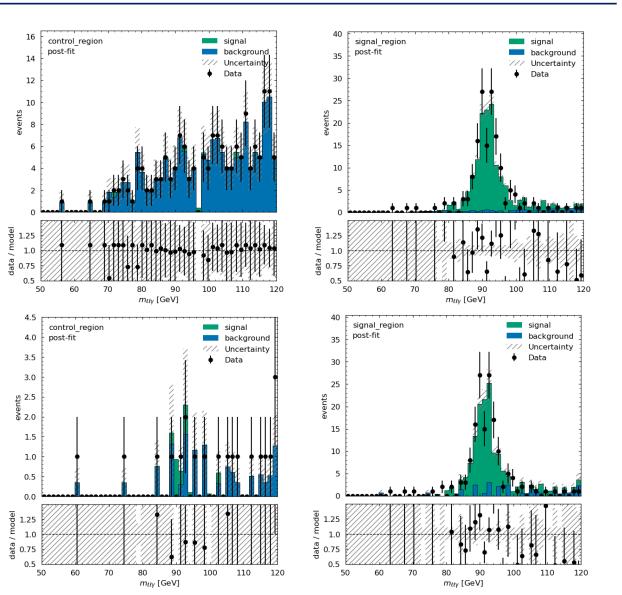


Calorimetro Elettromagnetico

- Per elettroni e fotoni
- Barrel: $|\eta| < 1.475$
- 2 end-cap: $1.375 < |\eta| < 3.2$
- Materiale attivo: Argon liquido -> rileva energia depositata
- Materiale assorbitore: piombo -> assorbe energia particelle
- Nel piombo avviene la cascata e si formano sciami


Si misura tutta l'energia

THE RESTRICTION OF THE PROPERTY OF THE PROPERT


Muon Spectrometer

- Per i muoni che passano indisturbati i calorimetri
- Barrel: |η| < 1.2
- 2 end-cap: $|\eta| < 2.7$
- Campo magnetico toroidale devia la traiettoria dei muoni misurandone il momento in 3 stazioni
- Le stazioni sono costituite da tubi MDT

Fit con $\eta = [0 - 0.6]$; $P_T = [10 - 15]$

Caso nominale

POSTFIT						
Canale	Campione	Yield	Errore			
CR	Background	159.5834	± 12.7067			
CR	Segnale	2.2278	± 1.4925			
SR	Background	14.9108	± 6.0469			
SR	Segnale	141.0799	± 12.7565			

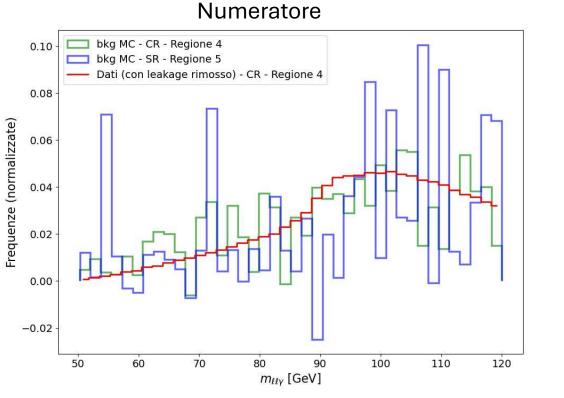
$$\mu_{SR} = 0.8876 \pm 0.1331$$
 $\kappa_{bkg} = 0.0934 \pm 0.0192$

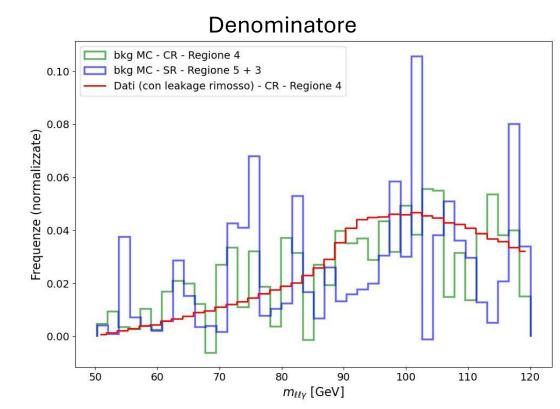
CR variata

POSTFIT						
Canale	Campione	Yield	Errore			
CR	Background	12.3021	± 3.7397			
CR	Segnale	2.7298	± 1.6522			
SR	Background	23.1957	± 8.7829			
SR	Segnale	132.8039	± 13.7287			

$$\mu_{SR} = 0.8355 \pm 0.0451$$
 $\kappa_{bkg} = = 1.8855 \pm 0.0326$

Modello Standard LHC/ATLAS ricostruzione e/ γ Calcolo degli Yield Misura degli SF conclusione


2


5

Fit simultanei in SR e CR

- Confronto tra:
- bkg MC in SR
- bkg MC in CR e
- dati nella CR (con il leakage rimosso)

