The SuperB Project

Riccardo Faccini "Sapienza" University and INFN Rome DARK2012 19/10/2012

A CONTRACT

SuperB

A luminosity frontier e⁺e⁻ experiment for precision flavour physics

- Goals of the project
- Accelerator
- Detector

2

B_D **PHYSICS**

- CP violation (CKM)
- Rare Decays

CKM- Matrix

... and sCKM-matrix

- e.g. MSSM with generic squark mass matrices.
- Use Mass insertion approximation with to constrain couplings:

$$(\delta^q_{ij})_{AB} = \frac{(\Delta_{ij})^q_{AB}}{m^2_{\widetilde{q}}}$$

• Can constrain the δ^{d}_{ij} 's using • $\mathcal{B}(B \to X_s \gamma)$ • $\mathcal{B}(B \to X_s \ell^+ \ell^-)$ • $\mathcal{A}_{CP}(B \to X_s \gamma)$

e.g. see Hall et al., Nucl. Phys. B **267** 415-432 (1986) Ciuchini et al., hep-ph/0212397

8

Penguins and new physics

NOW

IMPROVEMENT WITH SuperB

	Mode	Current Precision			Predicted Precision (75 ab^{-1})				
		Stat.	Syst.	$\Delta S^{f}(\text{Th.})$	Stat. Syst.	$\Delta S^f(\text{Th.})$			
	$J/\psi K_S^0$	0.022	0.010	0 ± 0.01	$0.002 \ 0.005$	0 ± 0.001			
	$\eta' K_S^0$	0.08	0.02	0.015 ± 0.015	$0.006 \ 0.005$	0.015 ± 0.015			
	$\phi K^0_S \pi^0$	0.28	0.01	_	$0.020 \ 0.010$	_			
	$f_0 K_S^0$	0.18	0.04	0 ± 0.02	$0.012 \ 0.003$	0 ± 0.02			
	$K^{0}_{S}K^{0}_{S}K^{0}_{S}$	0.19	0.03	0.02 ± 0.01	$0.015 \ 0.020$	0.02 ± 0.01			
	ϕK_S^0	0.26	0.03	0.03 ± 0.02	$0.020 \ 0.005$	0.03 ± 0.02			
1	$\pi^0 K_S^0$	0.20	0.03	0.09 ± 0.07	$0.015 \ 0.015$	0.09 ± 0.07			
	ωK_S^0	0.28	0.02	0.1 ± 0.1	$0.020 \ 0.005$	0.1 ± 0.1			
	$K^+K^-K^0_S$	0.08	0.03	0.05 ± 0.05	$0.006 \ 0.005$	0.05 ± 0.05			
	$\pi^0\pi^0K^0_S$	0.71	0.08	_	$0.038 \ 0.045$	_			
	ρK_S^0	0.28	0.07	-0.13 ± 0.16	$0.020 \ 0.017$	-0.13 ± 0.16			
	$J/\psi\pi^0$	0.21	0.04	_	$0.016 \ 0.005$	_			
	$D^{*+}D^{*-}$	0.16	0.03	_	$0.012 \ 0.017$	_			
	D^+D^-	0.36	0.05	_	$0.027 \ 0.008$	_			

Requirements from B_d physics

• Time-dependent measurements:

10

- Asymmetric beams
- Vertexing (improved due to reduced boost)
- PID
- Rare decays
 - High luminosity
 - Hermeticity
 - Low backgrounds

TAU PHYSICS

- Lepton flavor violation
- CP Violation
- Moments: electric dipole and g-2
- Precision $|V_{us}|$ measurements

Lepton Flavour Violation (LFV)

- v mixing leads to a low level of charged LFV ($B \sim 10^{-54}$).
 - > Enhancements to observable levels are possible with new physics scenarios.
 - Searching for transitions from 3rd generation to 2nd and 1st, i.e.

Other τ measurements

CPV

- \rightarrow expect sensitivity at 10⁻⁵ level ($\tau^{\pm} \rightarrow K_{s} \pi^{\pm} \nu$)
- RPV SUSY and multi-Higgs non-SUSY models
- SM CPV o(10⁻¹²)
- Electric dipole moment
 - \rightarrow expect sensitivity @ 10⁻¹⁹ e cm level
 - ► SM expectation ~10⁻²² ecm

▶ g-2

- \rightarrow Expect sensitivity @ $\Delta \alpha_{\tau} \sim 10^{-6}$ level
- possible for SUSY models

Require beam polarization

Requirements from τ physics

- High luminosity
- Beam polarization

CHARM PHYSICS

- CP violation
- Charm Threshold Physics
- Exotic charmonium spectroscopy

Exotic Spectroscopy (future)

- Low statistics
- Huge number of missing modes to study

Energy scan required

B decays]/ψππ]/ ψω	J/ wy	J/ψφ	յ/ ար	ψ(2S)ππ	ψ(2S) ω	ψ(2S)γ	χαγ	рр	лл	ΛοΛο	DD	DD*	D*D*	Ds(*)Ds(*)	YY
X(3872)		Ť,+					173 574	$\sim - 7$		1	22					1976 P	
	s	S	S	N/A	N/S	N/A	N/A	s	N/S	M/F	M/F	N/A	N/A	S	N/A	N/A	N/S
X,Y (3940)	M/F	s	N/S	N/A	N/A	N/A	N/A	M/F	N/A	M/F	M/F	N/A	M/F	N/S	N/A	N	N
Z(3940)	M/F	M/F	N/S	N/A	N/A	N/A	N/A	M/F	N/A	M/F	M/F	N/A	M/F	M/F	N/A	N	N
Y(4140)	M/F	M/F		S	N/A	N	N/A	N	N/A	M/F	M/F	N/A	M/F				N
X(4160)	M/F	M/F		M/F	N/A	N	N/A	N	N/A	M/F	M/F	N/A	M/F				N
Y(4260)	s	N/A	N/A	N/A	M/F		N/A	N/A	N	M/F	M/F	N/A	N				N/A
X(4350)	M/F	M/F	N	M/F	N/A	N	N	N	N/A	M/F	M/F	N/A	N				N
Y(4350)	M/F	N/A	N/A	N/A	M/F		N/A	N/A	N	M/F	M/F	N/A	N				N/A
Y(4660)	N	N/A	N/A	N/A	M/F	N	N/A	N/A	N	M/F	M/F	M/F	N	Ň	N	N	N/A

Requirements from charm physics

- High luminosity
- Scan energy from charm threshold (3.5 GeV) to Y(4S)

ABOVE Y(4S) PHYSICS

- Exotic Bottomonium
- Bs Physics

$$\begin{split} & \underset{A_{SL}^{s} \text{ physics}}{\textbf{F}} \\ & \textbf{F} \text{ Can cleanly measure } A_{SL}^{s} \text{ using 5S data} \\ & A_{SL}^{s} = \frac{\mathcal{B}(B_{s} \to \overline{B}_{s} \to X^{-}\ell^{+}\nu_{\ell}) - \mathcal{B}(\overline{B}_{s} \to B_{s} \to X^{-}\ell^{+}\nu_{\ell})}{\mathcal{B}(B_{s} \to \overline{B}_{s} \to X^{-}\ell^{+}\nu_{\ell}) + \mathcal{B}(\overline{B}_{s} \to B_{s} \to X^{-}\ell^{+}\nu_{\ell})} = \frac{1 - |q/p|^{4}}{1 - |q/p|^{4}} \\ & \sigma(A_{SL}^{s}) \sim 0.004 \text{ with a few } ab^{-1} \end{split}$$

 CPV in mixing measurements impossible, but ΔΓs≠0 allows for untagged time-dependent measurements of Re(λ)

$$R(\Delta t) = \mathcal{N} \frac{e^{-|\Delta t|/\tau(B_s)}}{2\tau(B_s)} \Big[\cosh(\frac{\Delta\Gamma_s \Delta t}{2}) - \frac{2\Re(\lambda_f)}{1+|\lambda_f|^2} \sinh(\frac{\Delta\Gamma_s \Delta t}{2}) \Big]$$

- Modes difficult for LHCb can be studied
- SuperB can also study rare decays with many neutral particles, such as ^{B_s} → ^{γγ}, which can be enhanced by SUSY.
 ²¹

Bs summary

Observable	1 ab^{-1}	30 ab^{-1}
$\Delta\Gamma$	$0.16 \ {\rm ps}^{-1}$	$0.03 \ {\rm ps}^{-1}$
Γ	$0.07~\mathrm{ps}^{-1}$	$0.01 \ {\rm ps}^{-1}$
$A^s_{ m SL}$	0.006	0.004
$A_{\rm CH}$	0.004	0.004
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	-	$<8\times10^{-9}$
$ V_{td}/V_{ts} $	0.08	0.017
$\mathcal{B}(B_s \to \gamma \gamma)$	38%	7%
β_s (angular analysis)	20°	8°
$\beta_s (J/\psi\phi)$	10°	3°
$\beta_s (K^0 \bar{K}^0)$	24°	11°

Requirements from above Y(4S) physics

- High luminosity @ Y(5S)
- Scan energy from Y(4S) to 11 GeV

OTHER PHYSICS

- ISR
- yy physics
- Electroweak physics
- Direct searches for exotics (light higgs, dark forces, invisible Y decays)

- Study of resonances yy width
- Measurement of form factors
- Search for new states with C=+ (e.g. hybrids with X= $\eta\pi$)

Light higgs

□ There are models (eg NMSSM) where LEP cannot exclude completely CP-odd Higgs with $m_A < 2m_B$

$$\Upsilon(nS) \rightarrow A \gamma \rightarrow \tau \tau \gamma$$

$$R_{\tau/\ell} = \frac{\Gamma_{Y(nS) \to \gamma_s \tau \tau}}{\Gamma_{\ell\ell}^{(em)}} = \frac{B_{\tau\tau} - B_{\ell\ell}}{B_{\ell\ell}} = \frac{B_{\tau\tau}}{B_{\ell\ell}} - \frac{B_{\tau\tau}}{B_{\ell\ell}} - \frac{B_{\tau\tau}}{B_{\ell\ell}} = \frac{B_{\tau\tau}}{B_{\ell\ell}} - \frac{B_{\tau\tau}}{B_{\ell\ell}} - \frac{B_{\tau\tau}}{B_{\ell\ell}} - \frac{B_{\tau\tau}}{B_{\ell\ell}} = \frac{B_{\tau\tau}}{B_{\ell\ell}} - \frac{B_{\tau\tau}}{B_{\ell\ell}} - \frac{B_{\tau\tau}}{B_{\ell\ell}} - \frac{B_{\tau\tau}}{B_{\ell\ell}} - \frac{B_{\tau\tau}}{B_{\ell\ell}} = \frac{B_{\tau\tau}}{B_{\ell\ell}} - \frac{B_{$$

Two approaches:

 Search for deviations from lepton universality in Y decays

Optimized by systematics

Search for monochromatic photon

 \odot Large background from $e^+e^- \rightarrow \tau \tau \gamma$

[©]Use cascade Y(3S)→Y(1S)ππ→Aγ ππ $\frac{3}{2}$

Dark matter searches Dominant mode $Y(3S) \rightarrow Y(1S)_{\pi\pi} \rightarrow \chi\chi_{\pi\pi} \rightarrow$ THE STANDARD MODEL $BR(\Upsilon(1S) \to \nu \bar{\nu}) = \frac{N_{\nu} G_F^2}{48 \pi} \left| 1 - \frac{4}{3} \sin^2 \theta_W \right|^2 \frac{f_{\Upsilon(1S)}^2 M_{\Upsilon(1S)}^3}{\Gamma_{\Upsilon(1S)}}$ $BR(\Upsilon(1S) \to \nu \bar{\nu}) = (1.03 \pm 0.04) \times 10^{-5}$ LOW-MASS DARK MATTER Fayet, McElrath, Yeghiyan, ... Most recently, Yeghiyan calculated from an effective theory that: $BR(Y(1S) \to \phi \bar{\phi}) = \frac{C_3^2}{\Lambda_{_H}^4} \frac{f_{Y(1S)}^2}{48 \pi \Gamma_{Y(1S)}} \left[M_{Y(1S)}^2 - 4m_{\phi}^2 \right]^{3/2}$ where the production of the dark matter is mediated by heavy degrees of freedom whose mass scale is Λ_{H} and where C_3 is the (real-valued) Wilson coefficient for the term in the

effective theory that leads to this final state.

Search for Dark Forces

- Results from Pamela/Fermi: excess of positrons of astrophysical origin
- →Due to particles decaying into e⁺e⁻ with m<2m_p?
- → "Dark" gauge sector

Possible searches at BABAR

SuperB Sensitivity to dark forces

Expect to improve:

- 2 o.o.m. on dark
 Higgs processes and
 very rare B decays ~
- 1 o.o.m. on dark photon searches and rare light meson decays

0.1

0.01

Requirements from "other" physics

- High luminosity
- Customed triggers

Requirements and competitors

Requirements	Competitors				
High luminosity @ Y(4S) Asymmetric beams Good vertex resolution	Belle II (sligtly lower lumi, starting earlier) LHCb (limited number of channels accessible)				
polarization	nobody				
Energy scan	BES III (up to 4 GeV) Panda (ppbar@threshold) -much lower stat/ only conventional J ^{CP}				
	,				

SuperB main features

- Goal: maximal luminosity , low wall power
- 2 rings (~4 GeV and ~7 GeV) with flexible design
- Ultra low emittance optics: 7x4 pm vertical emittance
- Beam currents: comparable to present Factories
- Crab-waist and low PA scheme used to maximize luminosity and minimize beam size blow-up
- No "emittance" wigglers used (save power)
- Design based on recycling PEP-II hardware (save costs)
 - Longitudinal polarization for electrons in the HER

Possibility to push the cm energy to the τ -charm threshold with a luminosity of 10^{35} cm⁻² s⁻¹ 36

e⁺e⁻ machine in TorVergata (Rome) E_{CM}=4-12 GeV 37

Accelerator team structur

Detector Design (with *fewer* options)

SVT Layer 0 - technology options

- Ordered by increasing complexity:
 - Striplets
 - BASELINE \rightarrow Mature technology, not so robust against bkg occupancy
 - Hybrid pixels
 - \rightarrow Viable, although marginal in term of material budget
 - CMOS MAPS
 - → New & challenging technology: fast readout needed (high rate)
 - Thin pixels with vertical integration
 - pixel matrix with \rightarrow Reduction of material and improved performance
- Several pixel R&D activities
 - Performances: efficiency, hit resolution
 - Radiation hardness
 - Readout architecture
 - Power, cooling

in pixel sparsification LATCH Digital p_substrat

Test of a hybrid

CMOS MAPS with

Drift CHamber (DCH)

- Large volume gas (BaBar: He 80% / Isobutane 20%) tracking system providing measurement of charged particle mom. and ionization energy loss for particle identification
- Primary device to measure speed of particles having momenta below ~700 MeV/c
- About 40 layers of centimetre-sized cells strung approximately parallel to the beamline with subset of layers strung at a small stereo angle in order to provide measurements along the beam axis
- Momentum resolution of ~0.4% for tracks with $p_t = 1 \text{ GeV/c}$
- Overall geometry
 - Outer radius constrained to 809 mm by the DIRC quartz bars
 - Nominal BaBar inner radius (236 mm) used until Final Focus cooling finalized
 - Chamber length of 2764 mm (will depend on forward PID and backward EMC)

(a) Spherical endplates design.

(b) Stepped endplates design.

R&D on cluster counting

- Kaon-pion separation achieved by counting the number of released clusters
 - a more direct measurable rather than the integral energy
 - need time resolution to resolve clusters

• To cope with high luminosity (10^{36} cm⁻²s⁻¹) & high background

Complete redesign of the photon camera [SLAC-PUB-14282]: true 3D imaging using:

- $25 \times$ smaller volume of the photon camera
- IOx better timing resolution to detect single photons
- Optical design is based entirely on Fused Silica glass
 - \rightarrow Avoid water or oil as optical media

FDIRC - photon camera (12 in total)

- Photon camera design (FBLOCK)
 Initial design by ray-tracing
 [SLAC-PUB-13763]
 - Experience from the 1^{rst} FDIRC prototype [SLAC-PUB-12236]
 - Geant4 model now
 [SLAC-PUB-14282]
- Main optical components
 - New wedge
 - \rightarrow Old bar box wedge not long enough
 - Cylindrical mirror to remove bar thickness
 - Double-folded mirror optics to provide access to detectors
- Photon detectors: highly pixilated H-8500 MaPMTs
 - Total number of detectors per FBLOCK: 48
 - Total number of detectors: 576 (12 FBLOCKs)
 - Total number of pixels: 576 × 32 = 18,432

The ElectroMagnetic Calorimeter (EMC)

- System to measure electrons and photons, assist in particle identification
- Three components
 - Barrel EMC: CsI(Tl) crystals with PiN diode readout
 - Forward EMC: LYSO(Ce) crystals with APD readout
 - Backward EMC: Pb scintillator with WLS fiber to SiPM/MPPC readout [option]
- Groups: Bergen, Caltech, Perugia, Rome
 → New groups welcome to join!

Sketch of backward Pb-scintillator calorimeter, showing both radial and logarithmic spiral strips (24 Pb-scint layers, 48 strips/lager, total 1152 scintillator strips)

Background issues

- High background (rad bhabha) is critical
- Best solution for FWD is LYSO → very expensive (10M€)
 →alternatives:
 - Replace CsI(TI) only partly with LYSO (internal)
 - Use pure CsI
- Also barrel (where CsI(TI) cannot be replaced) might suffer

Instrumented Flux Return (IFR)

- Built in the magnet flux return
 - \rightarrow One hexagonal barrel and two endcaps
- Scintillator as active material to cope with high flux of particles: hottest region up to few 100 Hz/cm²
- 82 cm or 92 cm of Iron interleaved by 8-9 active layers
 → Under study with simulations/testbeam
- Fine longitudinal segmentation in front of the stack for K_L ID (together with the EMC)
- Plan to reuse BaBar flux return
 - → Add some mechanical constraints: gap dimensions, amount of iron, accessibility
- 4-meter long extruded scintillator bars readout through 3 WLS fibers and SiPM
- Two readout options under study
- Time readout for the barrel (two coordinates read by the same bar)

Binary readout for the endcaps (two layers of orthogonal bars)

Status of the project

- 2010: SuperB has been approved within the italian research plan.
- Dec 2010: A financial allocation of 250 Million Euros from the italian government in about five years approved for the "superb flavour factory"
- May 2011: Site established
- 2011: Cabibbo Lab has been created
- Currently:
 - Spending review for the project handled to the ministry
 - Finalizing machine design and schedule, to be handled to the ministry within september
 - Decision on full funding expected from the ministry within
 fall

- Building the international collaboration on the detector (missing manpower!) and nominating spokesperson
- Finalizing detector TDR (to be published within fall)

Detector Schedule

Summary

SuperB is a Super-Flavour-Factory

- Produces huge numbers of $B_d,\,B_s,\,D,\,\tau,\,\gamma\gamma,\,and$ continuum events
- Searches for impact of new physics in flavour decays but not only

SuperB presents unique characteristics:

- Luminosity
- Beam polarization
- Energy scan potentialities

Challenges: machine detector schedule ...

White Papers:

- Detector arXiv:1007.4241
- Accelerator arXiv:1009.6178
- Physics arXiv:1008.1541

System	Institutions
	Bologna, Milano, Pavia, Pisa, Rome3, Torino, Trieste,
SVT	Trento, LBNL, Queen Mary, RAL, Strasbourg, Bari
DCH	LNF, McGill, Montreal, TRIUMF, UBC, Victoria, Lecce
	SLAC, BINP, (Hawaii), Cincinnati, Bari , Padova, Maryland,
PID	LAL, LPNHE
EMC	Bergen, Caltech, Perugia, Rome1, Napoli
IFR	Ferrara, Padova, Krakow, Bologna
ETD	SLAC, Caltech, Napoli, Bologna, LAL, Padova, Rome3
	Padova, Ferrara, Torino, Bari, Bologna, Rome2, Pisa,
Computing	Perugia, LNF, LBNL, Napoli, SLAC
Magnet/	
Integration	SLAC, LNF, Pisa, Genova
Backgrounds/MDI	SLAC, Pisa, LNF, LNS, Cagliari, Ohio State
	(Valencia, Barcelona, Annecy, Tel Aviv, Liverpool, Kiev, ITEP,
	Riverside, Kansas, Livermore, Louisville, Notre Dame,Ohio
	State, Princeton, Southern Methodist, South Carolina,
TBD	Austin, Utah ,Grenoble ,Strasbourg

Accelerator Parameters

	PEP-II (SLAC)	SuperB (Italy)	SuperKEKB (KEK)		
Luminosity $(10^{30} \text{ cm}^{-2} \text{s}^{-1})$	12069	1.0×10^{6}	8×10^5		
Injection energy (GeV)	(design: 3000) 2.5–12	$e^{-}/e^{+} \cdot 42/67$	$e^{-}/e^{+} \cdot 7/4$		
Transverse emittance $(10^{-9}\pi \text{ rad-m})$	$e^{-}: 48 (H), 1.5 (V)$ $e^{+}: 24 (H), 1.5 (V)$	$e^{-}: 2.5 (H), 0.006 (V)$ $e^{+}: 2.0 (H), 0.005 (V)$	5 (H), 3 (V)		
β^* , amplitude function at interaction point (m)	e^{-} : 0.50 (H), 0.012 (V) e^{+} : 0.50 (H), 0.012 (V)	e^{-} : 0.032 (H), 0.00021 (V) e^{+} : 0.026 (H), 0.00025 (V)	$e^{-}: 0.025 (H), 3 \times 10^{-4} (V)$ $e^{+}: 0.032 (H), 2.7 \times 10^{-4} (V)$		
Beam-beam tune shift per crossing (units 10^{-4})	e^{-} : 703 (H), 498 (V) e^{+} : 510 (H), 727 (V)	20 (H), 950 (V)	e^{-} : 12 (H), 807 (V) e^{+} : 28 (H), 893 (V)		
RF frequency (MHz)	476	476	508.887		
Particles per bunch (units 10 ¹⁰)	$e^-/e^+: 5.2/8.0$	e^-/e^+ : 5.1/6.5	e^-/e^+ : 6.53/9.04		
Bunches per ring per species	1732	978	2500		
Average beam current per species (mA)	e^{-}/e^{+} : 1960/3026	e^{-}/e^{+} : 1900/2400	e^{-}/e^{+} : 2600/3600		

Detector Coordinators – B.Ratcliff, F. Forti Technical Coordinator – W.Wisnieswki

- SVT G. Rizzo
- DCH G. Finocchiaro, M.Roney
- PID N.Arnaud, J.Va'vra
- EMC F.Porter, C.Cecchi
- IFR R.Calabrese
- Magnet W.Wisniewski
- Electronics, Trigger, DAQ D. Breton, U. Marconi
- Online/DAQ S.Luitz
- Offline SW
 - Simulation coordinator D.Brown
 - Fast simulation M. Rama
 - Full Simulation F. Bianchi
- Background simulation M.Boscolo, E.Paoloni
- Machine Detector Interface
 - Rad monitor –
 - Lumi monitor –
 - Polarimeter -

Detector Geometry Working Group Chairs : M.Rama, A.Stocchi

Forward Task Force Chair H.Jawahery

Backward Task Force Chair W. Wisniewski

> Mechanical integration team F. Raffaelli

To be created: Central electronics team