SEARCHES FOR DARK PHOTONS AT THE MAINZ MICROTRON

Harald Merkel Johannes Gutenberg-Universität Mainz, Germany Dark Forces at Accelerators Workshop Frascati, 16th – 19th October, 2012

- The Mainz Microtron (MAMI)
- Pilot experiment
- Extended mass range
 - New settings
 - Improved simulation
- Low mixing region: displaced vertex
- Low mass region
 - ► The MESA accelerator
 - Septum at A1
 - MAMI Energy reduction

Exclusion limits from Beam-dump and Collider Experiments

- New limits from beam-dump experiments (S. Andreas)
- Improved exclusion limit for $(g-2)_e$

 $\bullet \Rightarrow$ Consequences for low mass experiments

S. Andreas, C. Niebuhr, and A. Ringwald, arXiv:1209.6083 [hep-ph] H. Davoudiasl, H. -S. Lee, and W. J. Marciano arXiv:1208.2973 [hep-ph] M. Endo, K. Hamaguchi, and G. Mishima, arXiv:1209.2558 [hep-ph]

Quasi-real Photo-Production off heavy target

Weizsäcker-Williams approximation:

$$\frac{d\sigma}{dxd\cos\theta_{\gamma'}} \approx \frac{8Z^2\alpha^3\varepsilon^2E_0^2x}{U^2}\tilde{\chi}\left[(1-x+\frac{x^2}{2})-\frac{x(1-x)m_{\gamma'}^2\left(E_0^2x\theta_{\gamma'}^2\right)}{U^2}\right]$$

with

$$x = \frac{E_{\gamma'}}{E_0}$$

$$U(x, \theta_{\gamma'}) = E_0^2 x \theta_{\gamma'}^2 + m_{\gamma'}^2 \frac{1-x}{x} + m_e^2 x$$

Lifetime:

$$\gamma c \tau \sim 1 \, \mathrm{mm} \left(\frac{\gamma}{10}\right) \left(\frac{10^{-4}}{\epsilon}\right)^2 \left(\frac{100 \,\mathrm{MeV}}{m_{\gamma'}}\right)$$

J. D. Bjorken et al., Phys. Rev. D 80, 075018 (2009)

- Virtual photon instead of γ'
- Calculable in QED
- (a), (b): Same shape of cross section \Rightarrow Not separable
- (c), (d): Peak for l^* on mass shell \Rightarrow Suppression by kinematics

Other backgrounds: Measurement!

Bethe-Heitler Background

- Peak at $m_{e^+e^-} = 0$
- Peak for asymmetric production
- Minimum for symmetric production at x = 1

Harald Merkel, Dark Forces at Accelerators 2012, Frascati

A1: Spectrometer setup at MAMI

Spectrometer A:

$$\alpha > 20^{\circ}$$

 $p < 735 \frac{\text{MeV}}{c}$
 $\Delta \Omega = 28 \text{ msr}$
 $\Delta p/p = 20\%$

Spectrometer B:

$$\alpha > 8^{\circ}$$

 $p < 870 \frac{\text{MeV}}{c}$
 $\Delta \Omega = 5.6 \text{msr}$
 $\Delta p/p = 15\%$

Spectrometer C:

$$\alpha > 55^{\circ}$$

 $p < 655 \frac{\text{MeV}}{c}$
 $\Delta \Omega = 28 \text{ msr}$
 $\Delta p/p = 25\%$

 $\delta p/p < 10^{-4}$

- Target: 0.05 mm Tantalum (mono-isotopic ¹⁸¹Ta)
- Beam current: $100\mu A$
- Luminosity: $L = 1.7 \cdot 10^{35} \frac{1}{\text{s cm}^2} \quad (L \cdot Z^2 \approx 10^{39} \frac{1}{\text{s cm}^2})$
- Complete energy transfer to γ' boson (x = 1)
- Minimal angles for spectrometers
- Spectrometer setup as symmetric as possible (background reduction)

Beam energy	$E_0 = 855.0 { m MeV}$
Spectrometer A	$p_{e^-} = 338.0 { m MeV}/c$
	$ heta_{e^-}=22.8^{\circ}$
Spectrometer B	$p_{e^+} = 470.0{ m MeV}/c$
	$\theta_{e^+} = 15.2^{\circ}$

• Particle identification e^+ , e^- by Cerenkov detectors

- Correction of path length in spectrometers $\approx 12 \text{ m}$ \Rightarrow Time-of-Flight reaction identification
- Coincidence time resolution $\approx 1 \, \mathrm{ns} \, \mathrm{FWHM}$
- Estimate of background: side band $5 \text{ ns} < T_{A \land B} < 25 \text{ ns}$
- Almost no accidental background $\approx 5\%$
- Above background: only coincident e^+e^- pairs!

• Mass of e^-e^+ pair $m_{\gamma'}^2 = (e^- + e^+)^2$

Exclusion limits

Confidence interval by Feldman-Cousins algorithm

- "Model" for Background-subtraction: average of 3 Bins left and right of central bin
- Resolution $\delta m < 500 \, \text{keV} = \text{bin width}$
- Averaging (mean of 10 bins) only for "subjective judgment"

- Full simulation with exact cross section per event
- Model: Coherent electro production off heavy nucleus
- Q.E.D., nuclear form factor, coherent sum of all contributions, radiative corrections, ...
- Exact 1st order in four diagrams for background, 2 diagrams for signal

 \Rightarrow Describes data within a few percent

Exclusion limit for mixing parameter $\boldsymbol{\epsilon}$

- Accidental background + Q.E.D. background
- Model deviates only on nuclear vertex, both for γ' and γ^*
- Conversion from ratio of cross sections:

$$\frac{d\sigma(X \to \gamma' Y \to l^+ l^- Y)}{d\sigma(X \to \gamma^* Y \to l^+ l^- Y)} = \left(\frac{3\pi\varepsilon^2}{2N_f\alpha}\right) \left(\frac{m_{\gamma'}}{\delta_m}\right)$$

 \Rightarrow Exclusion limit from 4 days of beam time $~~\epsilon < 10^{-3}$

H.M. et al., Phys. Rev. Lett. 106 (2011) 251802

Setting	E_0	p_{A}	p_{B}	\overline{I}_0	Tar	get	t
	(MeV)	(MeV/c)	(MeV/c)	(µA)	(mg/	cm^2	t
DM2012_57	180	78.7	98.0	2.2	Foil	9.4	12h 30' 56"
DM2012_72	240	103.6	132.0	5.5	Foil	9.4	46h 53' 18"
DM2012_77	255	110.1	140.4	7.0	Foil	9.4	43h 49' 11"
DM2012_91	300	129.5	164.5	11.7	Foil	9.4	37h 56' 03"
DM2012_109	360	155.4	197.6	16.6	Foil	9.4	5h 15' 29"
DM2012_138	435	190.7	247.7	43.4	Foil	9.4	44h 3' 27"
DM2012_150	495	213.7	271.6	7.0	Stack	113.1	36h 25' 16"
DM2012_177	585	250.0	317.3	16.3	Stack	113.1	29h 37' 03"
DM2012_218	720	309.2	392.7	19.4	Stack	113.1	76h 0'20"

Spectrometer	Angle	Solid angle	$\Delta p/p$
		(msr)	
A (electron)	20.01°	21.0	20%
B (positron)	15.63°	5.6	15%

- Mass range 50 MeV $< m_{\gamma} < 200$ MeV
- 9 settings with different beam energy
- Need to improve simulation

Needed: generator with probability distribution

$$dy = \frac{1}{q^4}\sin\theta d\theta$$

Inverse transform sampling (Important: $m_e \neq 0$, i.e. $q^2 \neq -4 E E' \sin^2 \frac{\theta}{2}$):

$$f(\theta') = \int_0^{\theta'} \frac{1}{q^4} \sin \theta \, d\theta = -\frac{1}{2 \, p_0 \, p'(p_0^2 + p'^2 - (E_0 - E')^2 - 2 \, p_0 \, p' \cos \theta')}$$

 \Rightarrow Inverse:

$$\theta = f^{-1}(y) = \arccos\left(\frac{\frac{1}{y} + 2p_0 p'(-(E_0 - E')^2 + p_0^2 + p'^2)}{4p_0^2 p'^2}\right)$$

with random number $y \in [f(0), f(\pi)]$

Solution: $|(a) + (b)|^2 = |(a)|^2 + 2(\operatorname{Re}(a)\operatorname{Re}(b) + \operatorname{Im}(a)\operatorname{Im}(b)) + |(b)|^2$ With weights divided by 1, $1/q^2$, $1/q^4$ (\Rightarrow negative weights!)

Extended mass range (data taking 2012, preliminary)

- Extension to lower mass region
- Several beam energy settings
- Lower mass limit: minimum angle between spectrometers

- Sensitive to decay length 10 mm 130 mm
- $\Theta \Rightarrow \gamma c \tau = 4.35 \text{ mm} 1120 \text{ mm}$ (10%-limit)
- $\bullet \Rightarrow \epsilon = 10^{-6} 10^{-5}$
- Target: 5 mm Ta \Rightarrow $L = 1.72 \cdot 10^{37} \frac{1}{\text{s cm}^2}$ at 100 μ A beam current
- Beam stabilization, shielding, target cooling

- Macroscopic decay vertex distance
- $\epsilon < 10^{-4}$

- Luminosity
- Coupling vs lifetime
- Angular range

 $\epsilon > 10^{-6}$ $m_{\gamma'} < 500 \,\mathrm{MeV}/c^2$ $m_{\gamma'} > 30 \,\mathrm{MeV}/c^2$

Step 3: Access to low mass region: MESA Accelerator

Energy recovering super-conducting linac $\Rightarrow L = 10^{35} \frac{1}{\text{s} \text{ cm}^2}$ with internal gas target

- Magnifying ($\approx \times 2$) septum to restore missing mass resolution
- Modest field values for low mass region \rightarrow small (\approx 50 cm) normal conducting magnet
- Design studies with finite element calculations promising
- No extension to high mass region (KAOS 0° -Spectrometer instead, better at JLab?)

Minimal beam energy of the MAMI accelerator

- Historic 100 MeV extraction chamber is still available
- Short part of a new beamline neccessary \approx 4 dipole magnets

- Experimental Program:
 - Pair production on heavy target
 - Low energy high current
 - Finite production vertex
- Discrepancy on $(g-2)_{\mu}$
 - Region will be covered in the near future

 $\epsilon > 4 \cdot 10^{-4}$ $m_{\gamma'} < 50 \,\mathrm{MeV}/c^2$ $10^{-6} < \epsilon < 10^{-4}$