

Searches for dark photons at BABAR Elisa Guido INFN Genova

(on behalf of BABAR Collaboration)

DARK 2012 – Frascati, 17th October 2012

Outline

- ✓ Introduction to the Dark sector
- ✓ **BABAR** potentiality
- ✓ Analyses which can be reinterpreted in terms of dark photon searches:
 - ✓
 $\Upsilon(3S,2S) \rightarrow \chi + hadrons$ PRL 107 (2011) 221803 [arXiv:1108.3549]

 ✓
 $\Upsilon(3S) \rightarrow \chi + \mu^+\mu^-$ PRL 103 (2009) 081803 [arXiv:0905.4539]

 ✓
 $\Upsilon(3S) \rightarrow \chi + \tau^+\tau^-$ PRL 103 (2009) 181801 [arXiv:0906.2219]
 - \checkmark Υ(3S) → γ + invisible **arXiv:0808.0017**
- ✓ Future perspectives

Dark sector (I)

- ✓ Additional U(1) model (aka several names, among which <u>dark force</u>)
 - ✓ a <u>dark massive photon-like vector</u> and a <u>new light Higgs-like boson</u>. Masses are O(GeV). Couplings to SM are small.
 - ✓ introduced in order to explain several experimental observations (PAMELA, FERMI, DAMA/ LIBRA, CREST...)
 - Positron fraction can be explained in terms of secluded WIMPs (TeV scale): annihilation into pairs of dark bosons, subsequently decaying into lepton pairs
 - ✓ Poorly constrained and worth exploring; e⁺-e⁻ colliders offer a good environment in the search for new O(GeV) particles
 More data

Dark sector (II)

- ✓ New U(1) model attached to SM via a vector "portal", i.e. through kinetic mixing: $\Delta L_{mix} = εF^{\mu\nu}B_{\mu\nu}$
 - \checkmark ϵ mixing angle controlling the coupling to SM
 - ✓ naturalness arguments seem to favor ϵ ~10⁻⁴ 10⁻²
 - \checkmark ϵ being small \rightarrow light i.e. O(GeV) new gauge bosons
- ✓ Dark photon (A') acquires a charge eɛ

dark photon branching fraction

- ✓ Assumption: no light dark fermions.
 A' has to decay back to SM particles.
 The coupling of A' to SM fermions is described by α' = αε²
- ✓ A' lifetime usually small (prompt decay)

 $\mathcal{B}(A' \to \text{hadrons})/\mathcal{B}(A' \to \mu^+ \mu^-) = R(s = m_{A'}^2)$

 ✓ Above 1.2 GeV, hadronic decays are dominant, but leptonic modes are still important

Dark sector (III)

The BABAR detector

BABAR data samples

BABAR recorded luminosity

Possible searches at BABAR

Search for dark bosons

 $e^+e^- \rightarrow A'^* \rightarrow W'W'$ **arXiv:0908.2821** $e^+e^- \rightarrow \chi A' \rightarrow W'W''$

Search for dark Higgs boson
 e⁺e⁻→h'A', h'→A'A'
 A.Gaz's talk

- Search for dark hadrons $e^+e^- \rightarrow \pi_D X, \pi_D \rightarrow e^+e^-, \mu^+\mu^-$
- Search for dark photon in meson decay $\pi^0 \rightarrow \gamma |^+|^-, \eta \rightarrow \gamma |^+|^-, \varphi \rightarrow \eta |^+|^-, ...$
- Search for dark scalar/pseudoscalar $B \rightarrow K^{(*)}s_D \rightarrow K^{(*)}|^{+}|^{-}$ and $B \rightarrow K^{(*)}a_D \rightarrow K^{(*)}|^{+}|^{-}$ $B \rightarrow s_Ds_D \rightarrow 2(|^{+}|^{-})$ searches on-going... $B \rightarrow K 2(|^{+}|^{-})$ $B \rightarrow 4(|^{+}|^{-})$

Status of searches for dark photons

- BABAR has a number of analyses performed as searches for A⁰, a <u>light CP-odd Higgs</u>
 (foreseen in several extensions of the SM, for instance NMSSM) PRD 76, 051105 (2007)
 which can be reinterpreted as results for dark photon searches
 - ✓ based on Υ (3S,2S) datasets
 - ✓ different possible final states (dimuon, $\tau^+\tau^-$, hadrons, invisible), pattern of decays depending on A⁰ mass
 - \checkmark obtained limits on A⁰ mass

- ✓ Nevertheless, a good estimate for the order of magnitude of the limit
 - Already re-interpreted: $\Upsilon(3S,2S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+ \mu^-$

 $\Upsilon(3S,2S) \to \chi A^0, A^0 \to \mu^+ \mu^- \text{PRL 103 (2009) 081803}_{[arXiv:0905.4539]}$

- Events with exactly 2 oppositely-charged tracks and a single energetic photon ($E_{\chi}^* \ge 200$ MeV) \checkmark
 - at least one track identified as a μ \checkmark
 - dimuon candidate and γ are back-to-back in the center of mass frame \checkmark
- Backgrounds dominated by QED processes: \checkmark
 - "continuum" $e^+e^- \rightarrow \chi \mu^+ \mu^-$ 1.
 - 2. ISR production of ρ^0 , ϕ , J/ Ψ , Ψ (2S) and Υ (1S)
- Signal yield as a function of A^0 mass in the interval 0.212 < m(A^0) < 9.3 GeV: unbinned maximum \checkmark likelihood fits to the reduced mass distribution $m_R = \sqrt{m_{\mu\mu}^2 - 4m_{\mu}^2}$ Y(3S) data One muon identified One muon identified

9

- ✓ Mass steps of 2-5 MeV, for a total of 1951 mass values
- ✓ Excluding regions in the vicinity of J/Ψ and Ψ(2S)
- ✓ Signal has a typical resolution of 2-10 MeV, increasing with mass
- No significant excess of events above the background in the entire range
- ✓ 90% CL Bayesian ULs on the product of branching fractions of the decays

$$\mathcal{B}(\Upsilon(nS) \to \gamma A^0) \times \mathcal{B}(A^0 \to \mu^+ \mu^-)$$

✓ Combined UL on the quantity $f^2 \gamma B_{\mu\mu}$, with f_{γ} the effective coupling

$\Upsilon(3S) \rightarrow \gamma A^0, A^0 \rightarrow \tau^+ \tau^-$

PRL 103 (2009) 181801 [arXiv:0906.2219]

- ✓ Events with exactly 2 oppositely-charged tracks and a single energetic photon (E_X* ≥ 100 MeV)
 - ✓ both τ decay leptonically (either
 τ→ev_eν_τ or τ→µv_µν_τ)
- ✓ Backgrounds dominated by:
 - 1. $e^+e^- \rightarrow \gamma \tau^+ \tau^-$ (dominant) and higherorder QED processes
 - 2. other $\Upsilon(3S)$ decays and $e^+e^- \rightarrow q\overline{q}$ (smaller contributions)
- ✓ Any peak in the recoil mass $(m_{\tau\tau})$ translates to a peak in the photon energy distribution
- ✓ Search for an excess in a narrow region of the E_y spectrum

✓ Scan of the photon energy spectrum

E. Guido, INFN Genova

- ✓ Range analyzed 4.03 < $m_{\tau\tau}$ < 10.10 GeV, excluding the region of the decays $\Upsilon(3S) \rightarrow \chi \chi_{bJ}(2P), \chi_{bJ}(2P) \rightarrow \chi \Upsilon(1S)$, where J=0,1,2, due to irreducible photon backgrounds
- ✓ No evidence for a narrow resonance in all the mass range
- ✓ 90% CL Bayesian ULs on the product of branching fractions of the decay

$\Upsilon(3S,2S) \rightarrow \Upsilon A^0, A^0 \rightarrow hadrons \qquad [arXiv:108.3549]$

✓ Hadronic events with full event energy reconstructed, with E₈^{*} ≥ 2.5(2.2) GeV for the radiative photon from the Y(3S) (Y(2S)) decay, and at least 2 charged tracks

- ✓ Backgrounds:
 - 1. radiative Bhabha events ($e^+e^- \rightarrow \gamma e^+e^-$) or radiative μ pairs ($e^+e^- \rightarrow \gamma \mu^+\mu^-$)
 - 2. continuum (dominant): initial state radiation production of a light vector meson or a non-resonant hadrons
 - 3. $\Upsilon(nS)$ radiative decays either to a light vector meson or to a non-resonant hadron

- ✓ A⁰ signal evaluated at mass hypotheses ranging in ~0.3-7.0
 GeV, in 1 MeV steps (~6700 mass hypotheses)
- ✓ Absence of a significant signal
- ✓ 90% CL ULs on the product of branching fractions

$$\mathcal{B}(\Upsilon(nS) \to \gamma A^0) \times \mathcal{B}(A^0 \to \text{hadrons})$$

$\Upsilon(3S) \rightarrow \gamma A^0, A^0 \rightarrow invisible$

arXiv:0808.0017

- ✓ A⁰ could have an invisible decay: $A^0 \rightarrow \chi^0 \overline{\chi}^0$ decay (χ^0 is the LSP) in the case of m(χ^0)>m(τ) or m(A^0)<2m(τ)
- ✓ Events with a single energetic photon ($E_{\chi}^* \ge 3.0$ (1.5) GeV in the high (low) energy region) and no tracks originating from the e⁺e⁻ interaction region
 - ✓ high-energy region: 3.2< E_{χ}^* < 5.5 GeV → dominant background: QED process e⁺e⁻→γγ
 - ✓ low-energy region: 2.2< E_{χ}^* < 3.7 GeV → dominant background: radiative Bhabha e⁺e⁻→ χ e⁺e⁻
- ✓ Search for a monochromatic peak in the squared missing mass distribution

- \checkmark Set of maximum likelihood fits to the mass distribution
- ✓ No significant excess of events observed above the background in the range $0 < m(A^0) \le 7.8$ GeV
- ✓ 90% CL Bayesian ULs on the product of branching fractions of the decay

- ✓ Also a dark photon can decay to invisible particles in several scenarios (light dark matter, for instance) arXiv:1108.1391
 - Dark photon or similar particles may be long-lived and escape detection

Reinterpretation for dark photons

✓ Limits obtained by reinterpreting the $\Upsilon(3S,2S) \rightarrow \chi A^0$, $A^0 \rightarrow \mu^+\mu^-$ measurements

 ✓ Measurement done on Y(3S) and Y(2S) data samples only. Extending to all BABAR dataset and to all final states - will lead to tighter limits (excluding deeply the "g-2" preferred region)

Reinterpretation for dark photons

✓ Even more powerful exclusion within the reach of a Super Flavour Factory (O(50ab⁻¹))

 \checkmark

Conclusions

- ✓ A summary of **BABAR** analyses searching for a light Higgs boson, decaying into different final states ($\mu^+\mu^-$, $\tau^+\tau^-$, hadrons, or invisible)
- ✓ These analyses can be reinterpreted in terms of search for a dark photon
- ✓ It has been actually done for $\Upsilon(3S,2S) \rightarrow \chi A^0, A^0 \rightarrow \mu^+ \mu^-$ measurement \rightarrow a good estimate of the limits we can achieve
- Possibility of extending to all the available measurements, and to the complete dataset
- ✓ Many different searches for dark sector are on-going: stay tuned!