U boson search in $e^{\dagger}e^{-} \rightarrow \mu^{+}\mu^{-}\gamma$ process at KLOE

Francesca Curciarello University of Messina, INFN Sez. Catania (For the KLOE-KLOE2 Collaboration)

Dark Forces at Accelerators, LNF-Frascati, October 16th-19th, 2012

Outline

- Radiative Events at e⁺ e⁻ Colliders
- DAΦNE Complex and KLOE Detector
- $e^+e^- \rightarrow \mu^+\mu^-\gamma$ Data Analysis: based on KLOE Analysis for the $\sigma_{\pi\pi\gamma}$ measurement -Event Selection
- -Background Subtraction Procedure
- -Data/MC Comparison
- ϵ^2 Upper limit extraction in the region 600÷1000 MeV
- Future Perspectives and Conclusions

Motivations: Astrophysical Evidences

- -e⁺/e⁻ excess in the cosmic ray flux and the absence of a similar effect in proton/anti-proton observations by **PAMELA**
- -511 KeV gamma ray signal form galactic center by **INTEGRAL satellite**
- -total e⁺/e⁻ flux measured by ATIC,
- HESS, Fermi
- -DAMA/LIBRA annual modulation signal

All these observations could be explained if one assume that a dark matter gauge boson, mediator of an unknown dark force with $m_U < 2m_p$, exists.

Radiative events at e⁺e⁻Colliders

High luminosity e⁺ e⁻ Colliders Experiments at GeV scale can be a direct probe of Dark Forces.

At flavor factories a particular clean channel is the production of the U boson plus a photon with the consequent decay of the boson in a leptons pairs: $e^+ e^- \rightarrow U\gamma \rightarrow l^+ l^-\gamma$, $l = e, \mu$

The expected U boson signal should have the shape of a **narrow Breit-Wigner peak in the invariant mass distribution of the leptons pair**

Sensitivity to the kinetic mixing parameter in the range $\varepsilon \sim 10^{-3} - 10^{-2}$ for a M₁₁ up to a few GeV

Barzè, L. et al.: Radiative Events as a Probe of Dark Forces at GeV-Scale e^+e^- Colliders. Eur. Phys. J., C71, 2011, p. 1680–1688.

Dark Forces at Accelerators – F.Curciarello, Frascati, October 2012

4

DADNE: The **D**-Factory

Integrated Luminosity

Peak Luminosity Lpeak= 1.5 • 10³²cm⁻²s⁻¹

DA Φ NE is a e⁺e⁻ Colliders with a $\sqrt{s} = m_{\Phi} = 1.0195$ GeV, at LNF Frascati.

The DAΦNE Accelerator Complex consists of a linear accelerator, a damping ring, nearly 180 m of transfer lines, two storage rings that intersect at two points, a beam test area (BTF) and three syncrotron light lines.

KLOE Detector

The KLOE detector is made up of a large cylindrical drift chamber (DC), surrounded by a lead scintillating fiber electromagnetic calorimeter (EMC). A superconducting coil around the EMC provides a 0.52 T magnetic field.

EMC: measurement of **photon** energies and impact point, accurate measurement of the time of arrival of particles.

DC: tracking of the particles and reaction vertex reconstruction

KLOE Detector: EMC

4880 PM

End-caps C-shaped to minimize dead zones: 98% coverage of full solid angle

 $\sigma_{\rm E}/{\rm E} = 5.7\% / \sqrt{{\rm E}({\rm GeV})}$ $\sigma_{\rm T} = 54 \text{ ps} / \sqrt{{\rm E}({\rm GeV})} \oplus 100 \text{ ps}$ (Bunch length contribution subtracted from constant term)

excellent time resolution

Barrel + 2 end-caps: Pb/scintillating fiber

7

KLOE Detector: DC

 $\sigma_{xy} \sim 150 \mu m$, $\sigma_z = 2mm$ $\sigma_{p_{\perp}}/p_{\perp}$ better then 0.4% for large angle tracks $(40^{\circ} \le \theta \le 140^{\circ})$ vertex resolution = ~3mm

All-stereo geometry, 4m diameter, 3m long fiber epoxy composite, **12,000 sense wires** Filled with gas mixture:90% He 10% C_4H_{10}

бm

Excellent momentum resolution

8

$|F_{2}|^{2}$ KLOE Measurement from $\pi\pi\gamma/\mu\mu\gamma$

Measure of $|F_{\pi}|^2$ by the bin by bin ratio of pions over muons yields

Results presented by G.Mandaglio @TAU2012

F KLOE Measurement from $\pi\pi\gamma/\mu\mu\gamma$

$e^+e^- \rightarrow \mu^+\mu^- \gamma$ Data Analysis: SA Event Selection

- -Statistics: 240 pb⁻¹ data taken on 2002.
- -undetected photon emitted at small angle $(\theta_{\gamma} < 15^{\circ}, \theta_{\gamma} > 165^{\circ})$
- two charged tracks with 50°< $\!\theta_{\mu}\!<\!130^{\circ}$.
- -high statistics signal
- significant reduction of Φ resonant and FSR radiative processes backgrounds.

kinematics:
$$\vec{p}_{\gamma} = \vec{p}_{miss} = -(\vec{p}_1 + \vec{p}_2)$$

Dark Forces at Accelerators – F.Curciarello, Frascati, October 2012

11

$e^+e \rightarrow \mu^+\mu^-\gamma$ Data Analysis: Event Selection

background contributes coming from:

 $e^{+}e^{-} \rightarrow e^{+}e^{-}\gamma(\gamma)$ $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\gamma(\gamma)$ $\phi \rightarrow \pi^{+}\pi^{-}\pi^{0}$

Removed using kinematical cuts in the $M_{TRK} - M_{\pi\pi}^2$ plane.

 $M_{_{TRK}}$ defined by 4-momentum conservation assuming 2 charged particles of the same mass and 1 γ in the final state.

$$\left(\sqrt{s} - \sqrt{\left|p_{+}\right|^{2} + M_{TRK}^{2}} - \sqrt{\left|p_{-}\right|^{2} + M_{TRK}^{2}}\right)^{2} - \left(p_{+} + p_{-}\right)^{2} = 0$$

cut on variable M_{TRK} to reduce $\pi\pi\gamma$ tail contamination in the $\mu\mu\gamma$ M_{TRK} region, by requiring:

M_{TRK} <115 MeV for muons M_{TRK} >130 MeV for pions

The systematic uncertainty on the muons cross section is about 1% Data corrected by Trig, Track and PID efficiencies.

12

Background Subtraction

Three main background components:

- $e^+ e^- \gamma(\gamma)$ - $\pi^+ \pi^- \gamma(\gamma)$ - $\pi^+ \pi^- \pi^0$

-Backgrounds contributions obtained for 32 $M^2_{\mu\mu}$ slices of 0.02GeV² between 0.32 and 0.96 GeV²

-e⁺ e⁻ γ , $\pi^+ \pi^- \gamma$ and 3π distribution taken byMC

- tuning of $\pi^+\pi^-\pi^0$ M_{TRK} tail correction applied.

Background Subtraction

0.5

0.4

0.6

0.7

0.8

 GeV^2 to GeV and then subtracted to data.

0.9

 $M^2_{\mu\mu}$ [GeV²]

Cut on σ_{MTRK}

Cut on σ_{MTRK}

- ππγ M_{TRK} tail before $σ_{MTRK}$ cut
- --- ππγ M_{TRK} tail after σ_{MTRK} cut

Effect of the cut: -significant reduction of $\pi\pi\gamma$ contamination in the $M^2_{\mu\mu}$ region. -improvement of π/μ separation

Quality Factor $R_{\pi/\mu}$

Crosscheck of the goodness of the cut: Quality Factor $R_{\pi/\mu}$. $R_{\pi/\mu} < 1$ means the cut is efficient

$$\mathbf{R}_{\pi/\mu} = \frac{\mathbf{r}_{\pi/\mu(\text{after cut})}}{\mathbf{r}_{\pi/\mu(\text{before cut})}}$$

$$r_{\pi/\mu} = \frac{N_{\pi\pi\gamma}}{N_{\mu\mu\gamma}}$$

Reduction of the $\pi\pi\gamma$ fractional background in the $\mu\mu\gamma$ M_{TRK} region of a factor >2 Efficiency of the cut ~70%

Data/MC Comparison,

$$\frac{d \sigma_{\mu\mu\gamma(\gamma)}^{obs}}{dM_{\mu\mu}} = \frac{\Delta N^{osb} - \Delta N^{bckg}}{dM_{\mu\mu}} \cdot \frac{1}{\epsilon_{sel}} \cdot \frac{1}{\int L dt}$$

-μμγ absolute cross section obtained by subtracting residual backgrounds and dividing it for efficiencies (track and trig) and luminosity, $\sigma_{_{MTRK}}$ cut included.

-comparison of the computed cross section with the NLO QED prediction of PHOKHARA.

Excellent Data/MC agreement

Exclusion Plot for Number of Events

- -Observed spectrum and MC prediction by Phokara as input of Tlimit procedure (data and predicted background respectively)
- -each spectra divided in slices of 0.002 GeV (our binning factor)
- -each M_U sub-sample used to compute, by Tlimit Root Class (CLS technique), the exclusion plot of number of events

Dark Forces at Accelerators – F.Curciarello, Frascati, October 2012

Exclusion Plot for Number of Events

- -Observed spectrum and MC prediction by Phokara as input of Tlimit procedure (data and predicted background respectively)
- -each spectra divided in slices of 0.002 GeV (our binning factor)
- -each M_U sub-sample used to compute, by Tlimit Root Class (CLS technique), the exclusion plot of number of events

Dark Forces at Accelerators – F.Curciarello, Frascati, October 2012

Exclusion Plot for Number of Events

- -Observed spectrum and MC prediction by Phokara as input of Tlimit procedure (data and predicted background respectively)
- -each spectra divided in slices of 0.002 GeV (our binning factor)
- -each M_U sub-sample used to compute, by Tlimit Root Class (CLS technique), the exclusion plot of number of events

Dark Forces at Accelerators – F.Curciarello, Frascati, October 2012

ϵ^2 Upper limit extraction in the region 600 \div 1000 MeV

Dark Forces at Accelerators – F.Curciarello, Frascati, October 2012

ϵ^2 Upper limit extraction in the region $600 \div 1000$ MeV

$$\epsilon^{2} = \frac{N_{CLS} / (\epsilon_{eff} \cdot L)}{H \cdot I}$$

N_{CLS} = #entries of signal hypothesis of ROOT Tlimit procedure

 $\epsilon_{eff} = acceptance$ $(0^{\circ} < \theta_{\gamma} < 180^{\circ} 0^{\circ} < \theta_{\mu} < 180^{\circ})$ + eff. corrections $H = \frac{d\sigma_{\mu\mu\gamma}/d\sqrt{s_{\mu}}}{\sigma(e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}, s)}$ $L = 239.29 \text{ pb}^{-1}$

23

ϵ^2 Upper limit extraction in the region 600÷1000 MeV

Future Perspectives: muon acceptance extension

Dark Forces at Accelerators – F.Curciarello, Frascati, October 2012

Future Perspectives: muon acceptance extension

Also θ_{u} acceptance extension investigated with no effects on the muon invariant mass distribution.

Future Perspectives

-The result presented is based on \sim 240 pb⁻¹ with the photon at small angle.

-By using the full KLOE statistics (2.5 fb⁻¹), the current sensitivity can be improved by a factor of ~ 3 .

-In addition we can perform the analysis down to the threshold region by using a data sample off-peak (1GeV) to suppress the $\Phi \rightarrow \pi^+ \pi^- \pi^0$ background.

•We used 239.29 pb⁻¹ of 2002 KLOE data to search for light vector boson in the $e^+e^- \rightarrow \mu^+\mu^-\gamma$ channel.

•No evidence was found and an U.L. has been extracted on the kinetic mixing parameter ϵ^2 in the energy range between 600 and 1000 MeV.

•By changing muons acceptance selection and performing the analysis at full statistics and off-peak, we will have the possibility to explore the muons lower invariant mass region.

• Work is in progress to finalize this analysis and submit the result for publication

Thank you!

29

SPARE SLIDES

30

Motivations of KLOE collaboration to exclude BaBar UL

-The BaBar Collaboration never performed a direct search of the U boson. The exclusion plot is just an estimate from the search of a light, narrow scalar particle in Y decays: $Y(3S) \rightarrow \gamma A_0$

-The analysis is close to the search of $e^+e^- \rightarrow \gamma U$, but obviously acceptance and selection efficiency are different for scalar and vector particles

- The $\mu^+ \mu^-$ background shape from continuum production has been obtained from data taken at Y(4S), with the assumption that the A₀ is produced in decays and not in QED continuum processes. This is true for the A₀, but not for the vector U boson 31