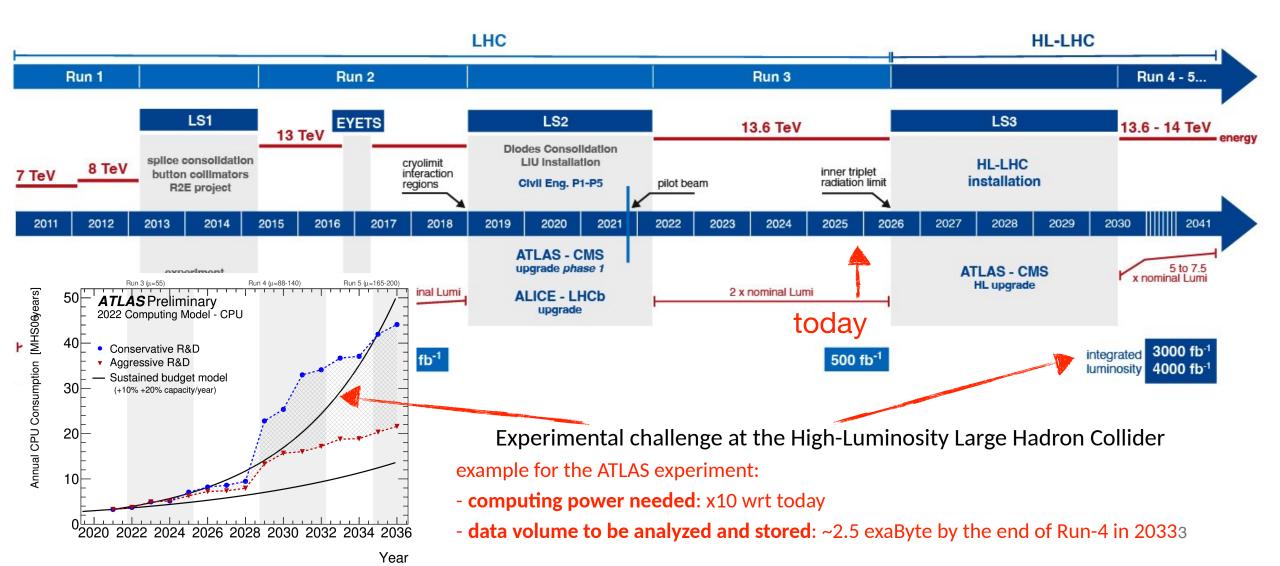
PHD IN TECHNOLOGIES FOR FUNDAMENTAL RSEARCH IN PHYSICS AND ASTROPHYSICS


Presentation of the Computing curriculum

Stefano Giagu Sapienza Università di Roma and INFN

Computing and Information Technology Curriculum

- Computing is at the heart of modern fundamental research
- Cutting-edge computational methods crucial in all fields of physics and astrophysics
- Aim of this curriculum is to train experts with advanced computational skills to tackle the most complex challenges in data analysis, modeling, and algorithm development:
 - processing enormous amounts of data (big data) from experiments and simulations
 - utilizing HPC for complex simulations and advanced data analysis
 - implementing Al algorithms for pattern recognition and generative tasks
 - learn efficient management and storage of scientific data

Challenge example: big data at HL-LHC

Opportunity example: Al-enhanced Triggers

Student simplification of AI models based on extreme compression supported by knowledge transfer techniques between neural networks to prevent Sapienza performance degradation effects in algorithms Compression **Teacher** Distillation Transfer **Optimized** KNOWLEDGE **FPGA** Model

-Teacher: CNN 70k weights 32 bits: 5 ms/eventv (Tesla V100 GPU)

-Student: CNN 700 weights 4 bits: 84 ns/event (AMD Virtex US+ FPGA)

Data

Educational Offer A.Y. 2025/26

- Advanced scientific programming in Matlab (Prof. Paolo Bardella; Prof. Stefano Scialò Politecnico di Torino)
- Fundamentals of system engineering and project management for large scientific projects (Dott. Marco Xompero; Dott. Runa Briguglio – INAF Arcetri)
- Big Data Analysis in Python (Dott. Gioacchino Vino INFN Bari)
- Programmable System on Chip (SoC) for data acquisition and processing (Prof. Andrea Fabbri University of Roma Tre)
- Adaptive Optics for Astronomy (Dott. Carmelo Arcidiacono INAF Padua)
- Machine Learning for Physics (Prof. Pierluigi Bortignon University of Cagliari)
- Simulation of optical photon propagation for generic scintillator-based detectors (Dott. Davide Serini INFN Bari)

Educational Offer A.Y. 2025/26

- Cloud Computing & Big Data Lab (Prof. Tommaso Cucinotta Sant'Anna School of Advanced Studies)
- Cloud Computing & Big Data (Prof. Tommaso Cucinotta Sant'Anna School of Advanced Studies)
- Computing Methods for Experimental Physics and Data Analysis (Prof. Andrea Rizzi; Prof.ssa Alessandra Retico – University of Pisa)
- Introduction to Neuromorphic Computing (Prof. Andrea Duggento University of Roma Tor Vergata)
- Maximum-entropy methods for complex systems I (Prof. Diego Garlaschelli IMT Lucca)
- Maximum-entropy methods for complex systems II (Prof. Tiziano Squartini IMT Lucca)
- Neural Networks and Deep Learning (Prof. Giorgio Carlo Buttazzo Sant'Anna School of Advanced Studies)
- Quantum Artificial Intelligence (Prof. Filippo Caruso University of Florence)

Students of the 41° cycle

Alessandra Mazzei – Open BIM and Digital Twin: an integrated digital ecosystem to define a new frontier in Asset Management at the Gran Sasso National Laboratories – INFN LNGS

Matilde Cavalli - Research and development of a methodological framework for the prospective assessment of the sustainability of research activities in nuclear physics experiments – University of Padua

Mattia Maniscalco - Artificial Intelligence for gamma-ray data analysis: the NASA COSI mission - INAF Bologna

Mauro Imbrosciano – Development of Synthetic Tracking algorithms for the rapid detection of Near-Earth Objects (NEOs) using GPU acceleration and Deep Learning techniques - INAF Catania

Mario Lauriano - Optimizing Machine Learning Algorithms for High-Precision Photometry and Anomaly Detection in Variable Stars' Light Curves – INAF Palermo

Miriana Lucchini - Space Situational Awareness and Characterisation of Resident Space Objects Using Optical Techniques – Officina Stellare