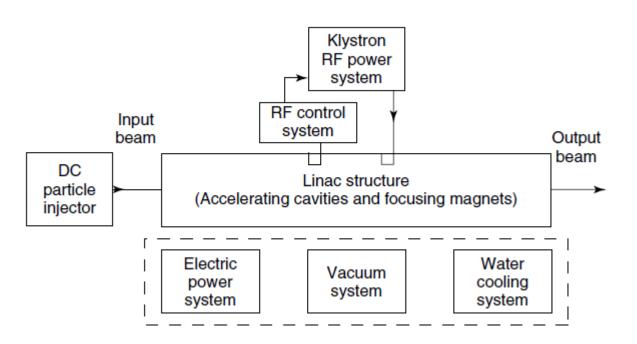


Presentation of Electrotechnics and Accelerator Technologies Curriculum


Mauro Migliorati (Sapienza, University of Rome)

Antonio Palmieri (INFN)*

Contents

Technologies applied to the creation of extremely intense electromagnetic fields for accelerators, which include

- Electromagnets
- Radio Frequency (RF) cavities, operating in particular in a regime of Superconductivity (SC)
- RF systems
- Magnets and high-performance power systems

Involved Expertise

- Power Electronics
- Magnet Technology
- Material Science
- Mechanical and Thermal Engineering
- SC Technology (i.e. Cryogenics)
- Vacuum Technology
- RF and Microwave
- Software Engineering
- Control System and LLRF (Low Level RF)
- Accelerator Physics (Beam Dynamics, Collective Effects, Plasma Physics, Electrodynamics)
- Project Management and System Engineering

Students from previous cycles Cycle 39°

Gaurav Rajesh Mota - "Surface impedance of superconductors under conditions of interest for fundamental physics: measurements and methods"

Students of the 41° cycle

Margherita Morriello - Development of HTS Dipole Magnets for the FCC-hh Collider – INFN Milano LASA

Matteo Lazzari - Development of next-generation thin film SRF cavities in Nb3Sn on Cu — Zanon Research

Cavity prototype for operation at 4K with Q_0 equal to the 2K Nb one (Supervisor Cristian Pira)

Educational Offer A.Y. 2025/26

- Advanced scientific programming in Matlab (Prof. Paolo Bardella; Prof. Stefano Scialò Politecnico di Torino)
- Coupled electrical-thermal-structural Finite Element Analyses (Prof. Giovanni Meneghetti; Prof. Mattia Manzolaro; Prof. Michele Ballan University of Padua)
- Metal Additive Manufacturing (Dott. Pietro Rebesan INFN Padua)
- Fundamentals of system engineering and project management for large scientific projects (Dott. Marco Xompero; Dott. Runa Briguglio INAF Arcetri)
- Applied Superconductivity: Quantum Phenomena and Quantum Systems (Prof. Enrico Silva University of Roma Tre)
- Programmable System on Chip (SoC) for data acquisition and processing (Prof. Andrea Fabbri University of Roma Tor Vergata)
- Collective effects in circular accelerators (Prof. Mauro Migliorati La Sapienza University)
- Physics of High Brightness Accelerators (Dott. Massimo Ferrario INFN Frascati)
- Physics, Technology and Applications of Linear Accelerators (Dott. David Alesini INFN Frascati)
- Joint University Accelerator School JUAS 2026 ESI, Archamps (France)

```
Course 1 (12 Jan \rightarrow 13 Feb 2026)
Course 2 (16 Feb \rightarrow 20 Mar 2026)
```

https://esi-archamps.eu/juas-presentation/