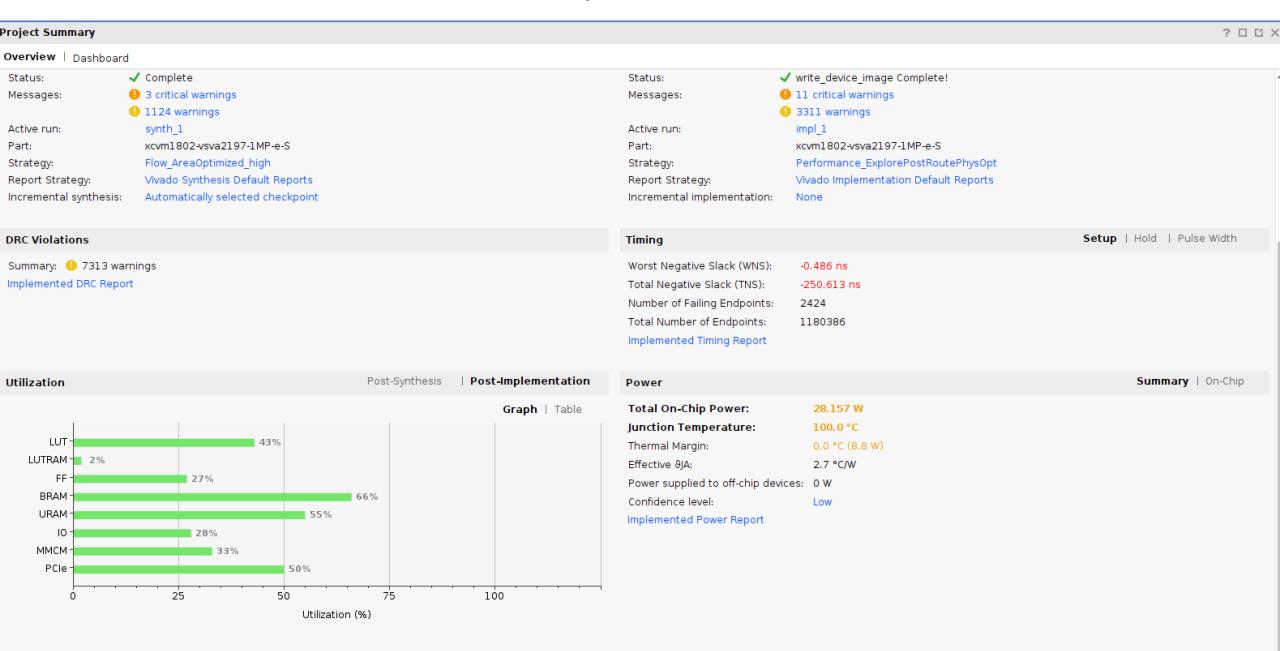
dRICH Backend DAQ status update

Ottorino Frezza, Francesca Lo Cicero, Alessandro Lonardo, Luca Pontisso

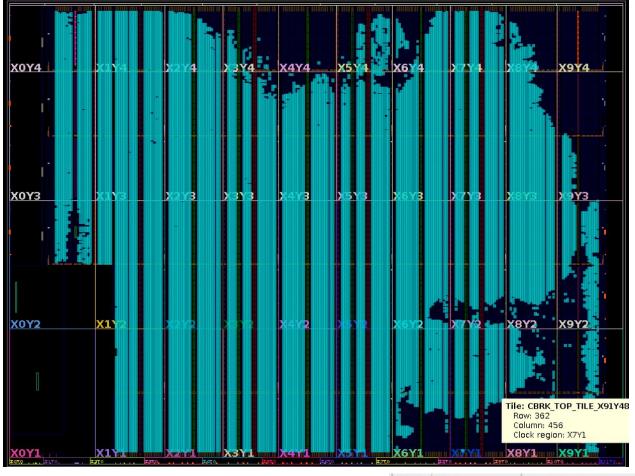
Summary of activities since last meeting

- Checked lpGBT flavour firmware versions on FLX-182
- Studied lpGBT protocol
- Some thoughts on how to map Alcor/FEB dataflow on eLinks
- Thoughts on requisites for RDO-DAM communication payload for the Data Reduction System on backend DAQ

lpGBT Firmware on FLX-182


- FLX182_LPGBT_12CH_LTICLK_GIT_phase2-master_rm-5.4_204_250925_1327 **OK**
- FLX182_LPGBT_16CH_LTICLK_GIT_phase2-release-5.3_rm-5.3_762_250531_1331 ?
 - Can't program FPGA, missing prj file (can't disable DDR calibration)

Instance	Module	Total LUTs	Logic LUTs	LUTRAMs	SRLs	FFs	RAMB36	RAMB18	URAM	DSP Blocks
felix_top	(top)	525065	512813	9156	3096	657519	400	776	294	0
xcvm1802		899840				1799680	612	1224	368	1968
% used		58,3509291				36,5353285	65,3594771	63,3986928	79,8913043	0


• FLX182_LPGBT_24CH_LTICLK_GIT_phase2-master_rm-5.4_204_250925_1327 NOT-OK

→ □ DRC (1 error)
→ □ Floorplan (1 error)
→ □ Pblock (1 error)
→ □ Pblock (1 error)
→ □ Pblock (1 error)
→ □ [DRC UTLZ-1] Resource utilization: RAMB18 and RAMB36/FIFO over-utilized in Top Level Design (This design requires more RAMB18 and RAMB36/FIFO cells than are available in the target device. This design requires 1956 of such cell types but only 1934 compatible sites are available in the target device. Please analyze your synthesis results and constraints to ensure the design is mapped to Xilinx primitives as expected. If so, please consider targeting a larger device.)
● [Vivado Tcl 4-23] Error(s) found during DRC, Placer not run.

FLX182_LPGBT_12CH_LTICLK_GIT_phase2-master_rm-5.4_204_250925_1327

FLX182_LPGBT_12CH_LTICLK_GIT_phase2-master_rm-5.4_204_250925_1327

The **uplink transmit data from the lpGBT to the counting room**. The uplink data rate is programmable and can be either 5.12 Gb/s or 10.24 Gb/s. Additionally, two FEC codes can be used: FEC5 allowing to correct up to 5 consecutive wrong bits and FEC12 with a correction capacity of up to 12 bits. The effective data rate is thus determined by the selected data rate (5.12 or 10.24 Gb/s) and the FEC code used (FEC5 or FEC12)

- Transport of acquired data for off-detector processing, storage,

The **downlink transmits data from the counting room to the lpGBT**. The data is transmitted at 2.56 Gb/s in a 64-bit frame that are transmitted every 25 ns (the LHC bunch crossing period):

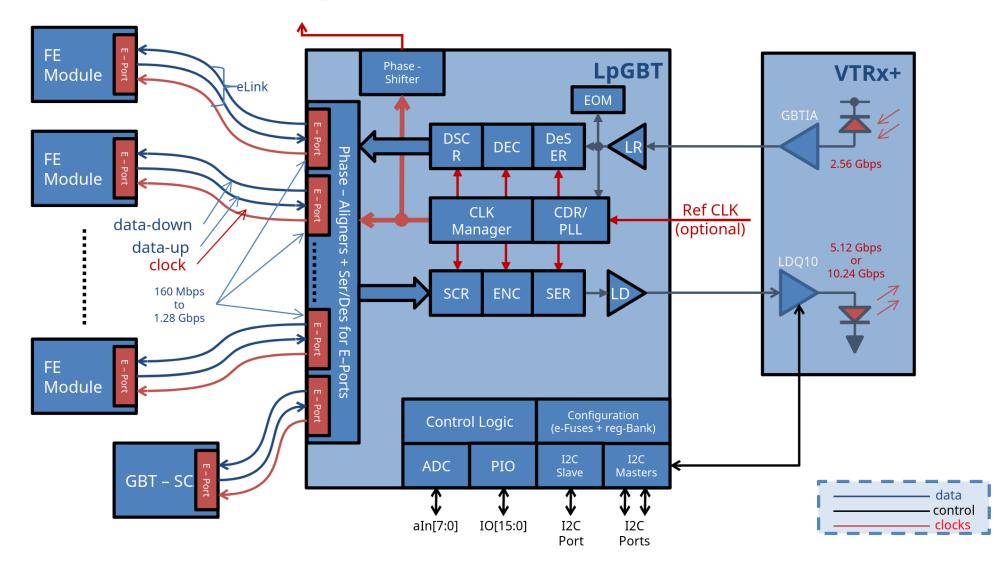
- Timing distribution, detector control, trigger distribution

eLinks are associated with **ePorts and ePorts** are grouped in **eGroups**. Each **eGroup**, is composed of **4 ePorts** - eLinks are "clustered" in groups of 4

The number of available groups is determined by the FEC uplink code in use;

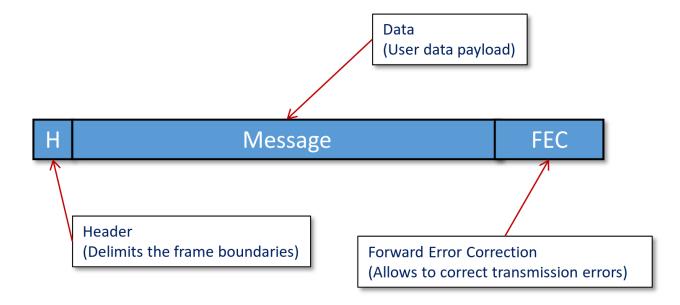
- The number of available eLinks within a group is determined by the Group data rate;
- The possible data rates depend on the uplink bandwidth (5.12 or 10.24 Gbps)
- The data rate of each group can be set independently [es. 10.24@FEC5/FEC12 -> 320/640/1280 Mb/s]

- The data rate of each group can be set independently:
 - A couple of [over complicated] examples:
 - uplink 5.12 Gbps & FEC12: 8 eLinks x 160 Mbps + 4 eLinks x 320 Mbps + 2 eLinks x 640 Mbps
 - uplink 10.24 Gbps & FEC5: 8 eLinks x 320 Mbps + 4 eLinks x 640 Mbps + 3 eLinks x 1.28 Gbps

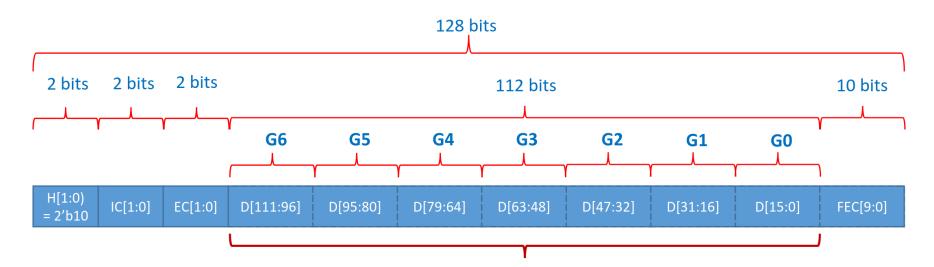

Input eLinks (<mark>uplink</mark>)												
uplink bandwidth [Gbps]	plink bandwidth [Gbps] 5.12						10.24					
FEC coding	FEC5		FEC12		FEC5		FEC12					
Bandwidth [Mbps]	160	320	640	160	320	640	320	640	1280	320	640	1280
Maximum number	28	14	7	24	12	6	28	14	7	24	12	6

128bits @ 25 ns (40 MHz) -> 5.12 Gb/s 256bits @ 25 ns (40 MHz) -> 10.24 Gb/s

Es. 10.24@FEC5 -> 7 *1280=8960 Mb/s max bw 10.24@FEC12 -> 6 *1280=7680 Mb/s max bw


	uplink						
	5.12	Gbps	10.24 Gbps				
	FEC5	FEC12	FEC5	FEC12			
Frame [bits]	12	28	256				
Header [bits]	2		2				
Data [bits]	116 102		232	204			
FEC [bits]	10	24	20	48			
Correction [bits]	5	12	10	24			
Efficiency	91%	80%	91%	80%			

IpGBT – Block Diagram Overview


lpGBT: Data encoding

- The LpGBT supports the following data rates:
 - Down link: 2.56 Gb/s
 - Up-link: 5.12 / 10.24 Gb/s
- In all cases data is transmitted as a frame composed of:
 - Header
 - The data field
 - A forward error correction field: FEC5 / FEC12
- The data field is scrambled to allow for CDR at no [additional] bandwidth penalty
- Efficiency = # data bits/# frame bits

	Down-link	Up-Link					
	2.56 Gb/s	5.12	Gb/s	10.24 Gb/s			
		FEC5	FEC12	FEC5	FEC12		
Frame [bits]	64	128		256			
Header [bits]	4	2		2			
Data [bits]	36	116	102	232	204		
FEC [bits]	24	10	24	20	48		
Correction [bits]	12	5	12	10	24		
Efficiency	56%	91%	80%	91%	80%		

Example: 5.12 Gbps FEC5 Uplink Frame

Frame	Function	I/O Group
FRMUP[9:0]	FEC[9:0]	
FRMUP[25:10]	Data[15:0]	0
FRMUP[41:26]	Data[31:16]	1
FRMUP[57:42]	Data[47:32]	2
FRMUP[73:58]	Data[63:48]	3
FRMUP[89:74]	Data[79:64]	4
FRMUP[105:90]	Data[95:80]	5
FRMUP[121:106]	Data[111:96]	6
FRMUP[123:122]	EC[1:0]	EC
FRMUP[125:124]	IC[1:0]	
FRMUP[127:126]	H[1:0] = 2'b10	HFH[1:0] = 2'b10

7 groups of 4 input e-Ports Number of data ports:

- 28 eLinks @ 160 Mbps
- 14 eLinks @ 320 Mbps
- 7 eLinks @ 640 Mbps

Note: This is how you will see the uplink frame after it has been processed by the lpGBT-FPGA receiver but not how it is actually transmitted by the lpGBT ...

Uplink – FEC 5

- Dual data rate:
 - 5.12 Gb/s
 - 10.24 Gb/s
- Frame:
 - Header:
 - 2 / 4 bits
 - 2'b10 (high) & 2'b01 (low)
 - IC field:
 - 2 bit
 - 80 Mb/s
 - EC field:
 - 2 bit
 - 80 Mb/s
 - Data field:
 - 112 / 224 bit
 - 4.48 / 8.96 Gb/s
 - FEC field:
 - 10 / 20 bit
- Error correction:
 - FEC:
 - Interleaving: 1 / 2
 - Symbol width: 5 bit
 - Number of wrong symbols: $1 (\times 1 / \times 2)$
 - Up to 5 / 10 consecutive bits
 - Efficiency: 91%
- eLinks:
 - Data
 - 28 eLinks @ 160 / 320 Mb/s
 - 14 eLinks @ 320 / 640 Mb/s
 - 7 eLinks @ 640 / 1280 Mb/s
 - EC
 - 1 eLink @ 80 Mb/s

FEC5

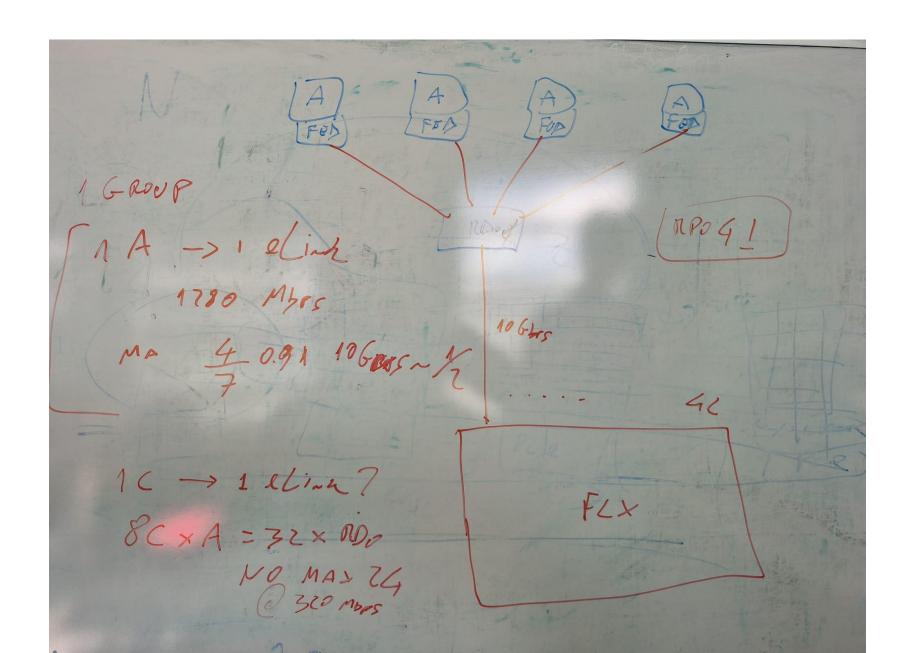
	5.12 Gb/s	10.24 Gb/s	
Option	7	7	
Frame (bits)	128	2 x 128	
Header (bits)	2	2+2	
Coded header	no	no	
User field (bits)	116	232	
Code (bits)	10	20	
16-bit multiplicity	7.250	14.5	
Remainder bits	4	8	
User Bandwidth (GHz)	4.64	9.28	
# eLinks groups (16 bit)	7	7	
eLinks bandwidth (MHz)	160/320/640	320/640/1280	
#eLinks	28/14/7	28/14/7	
EC bandwidth (MHz)	80	80/ 160	
IC bandwidth (MHz)	80	80/ 160	
Unassigned bits	0	4	
Corrected (bits)	5	2 x 5	
Efficiency	91%	91%	

Uplink – FEC 12

- Dual data rate:
 - 5.12 Gb/s
 - 10.24 Gb/s
- Frame:
 - Header:
 - 2 / 4 bits
 - 10 (high) & 01 (low)
 - IC field:
 - 2 bit
 - 80 Mb/s
 - EC field:
 - 2 bit
 - 80 Mb/s
 - Data field:
 - 96 / 192 bit
 - 3.84 / 7.68 Gb/s
 - FEC field:
 - 24 / 48 bit
- Error correction:
 - FEC:
 - Interleaving: 3 / 6
 - Symbol width: 4 bit
 - Number of wrong symbols: $1 (\times 3 / \times 6)$
 - Up to 12 / 24 consecutive bits
 - Efficiency: 78% (if accounting for the unassigned bits)
- eLinks:
 - Data
 - 24 eLinks @ 160 / 320 Mb/s
 - 12 eLinks @ 320 / 640 Mb/s
 - 6 eLinks @ 640 / 1280 Mb/s
 - EC
 - 1 eLink @ 80 Mb/s

FEC12

	5.12 Gb/s	10.24 Gb/s
Option	28	28
Frame (bits)	128	2 x 128
Header (bits)	2	2+2
Coded header	no	no
User field (bits)	102	204
Code (bits)	24	48
16-bit multiplicity	6.375	12.75
Remainder bits	6	12
User Bandwidth (GHz)	4.08	8.16
# eLinks groups (16 bit)	6	6
eLinks bandwidth (MHz)	160/320/640	320/640/1280
#eLinks	24/12/6	24/12/6
EC bandwidth (MHz)	80	80/160
IC bandwidth (MHz)	80	80/160
Unassigned bits	2	8
Corrected (bits)	12	2 x 12
Efficiency	80%	80%


The FELIX firmware has two main flavours or modes, known as GBT [old version] and FULL:

- Both modes use the GBT protocol for the links towards the FE and support up to 24 links
- The GBT mode uses the GBT protocol to receive data from the FE
- BUT the FULL mode implements a light-weight protocol for this path, with a bandwidth of 9.6 Gb/s per optical link which accounting for 8b10b encoding means a maximum user payload of 7.68 Gb/s.
- FULL mode is intended for communication with other FPGA-based systems over the custom 8b/10b encoded protocol implemented as a single wide data stream with no handshaking or logical substructure (i.e. no E-links).

Example: ATLAS Liquid Argon Digital Processing Blade and L1Calo trigger systems use FELIX in FULL mode

- L1Calo uses a feature called streams: each of the 16 FULL mode links in use carries up to 9 streams, each transmitting messages at a rate of 100 kHz
- The New Small Wheel muon detector uses FELIX in GBT mode. Each FELIX card serves up to 200 E-links, each transmitting messages at the L1 trigger rate (100KHz?). The average size of a NSW message is 40B

Thoughts on mapping DAQ dataflows on eLinks

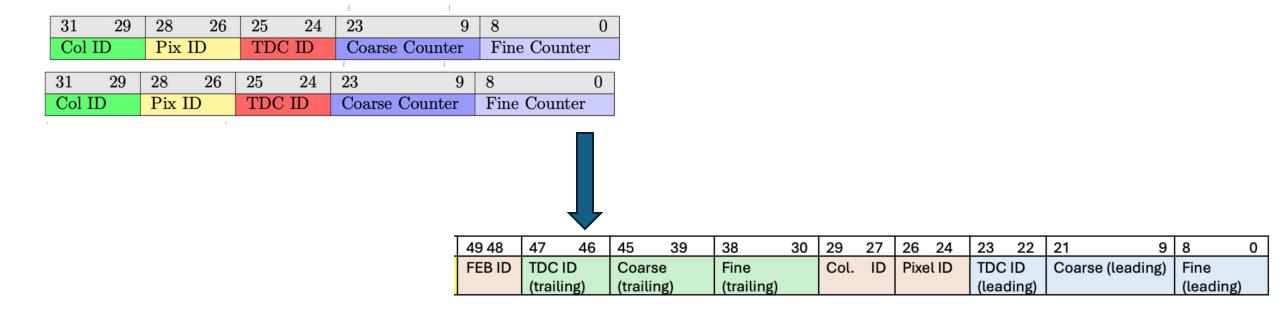
No data reduction: data format

- 128 clock cycles max spread in same event hits are NOT a problem
- 2 words for hit are NOT a problem (well...it depends on max rate...)

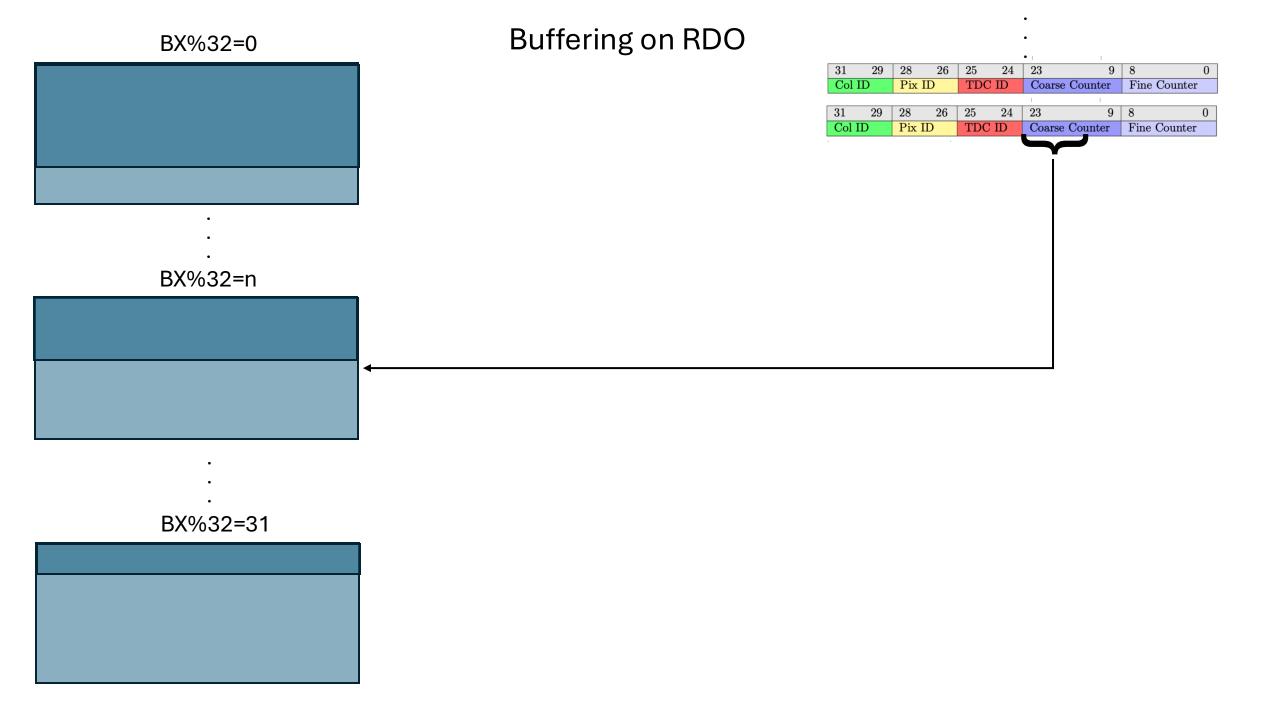
ALCOR BUS RDO to DAM

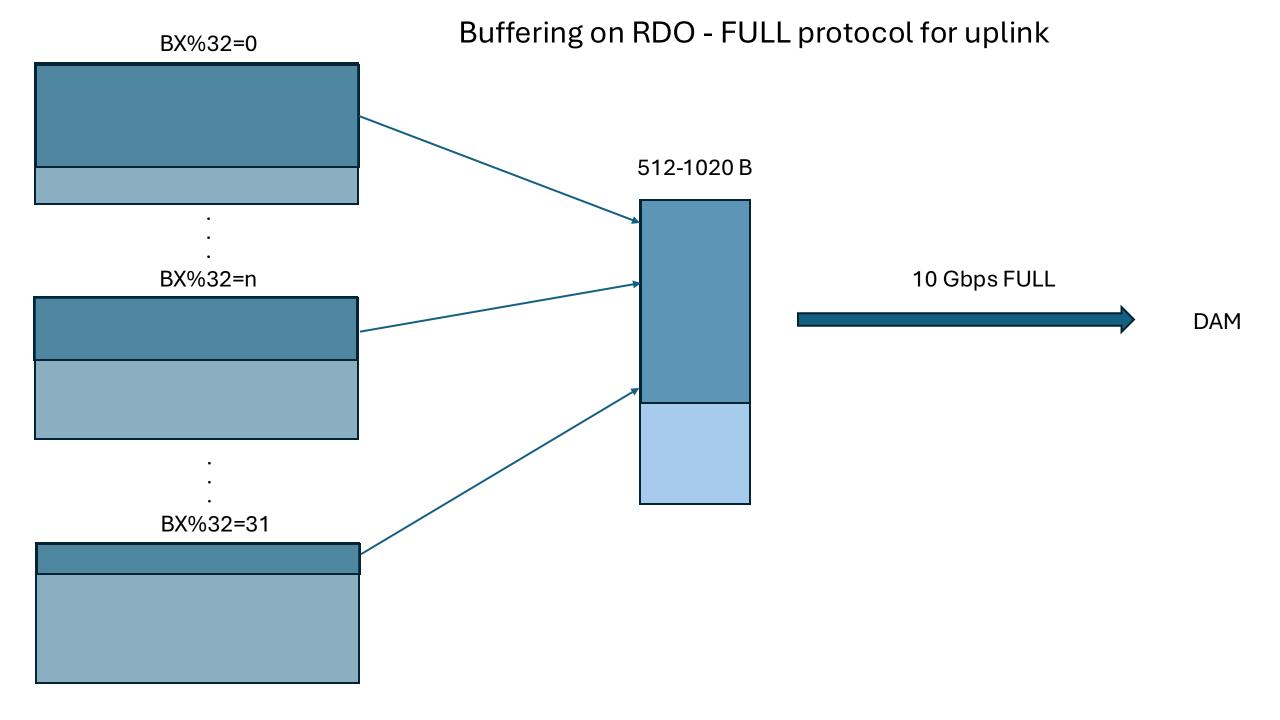
Thoughts on mapping DAQ dataflows on eLinks (2) – No data reduction

1. Direct Mapping (24 channels):

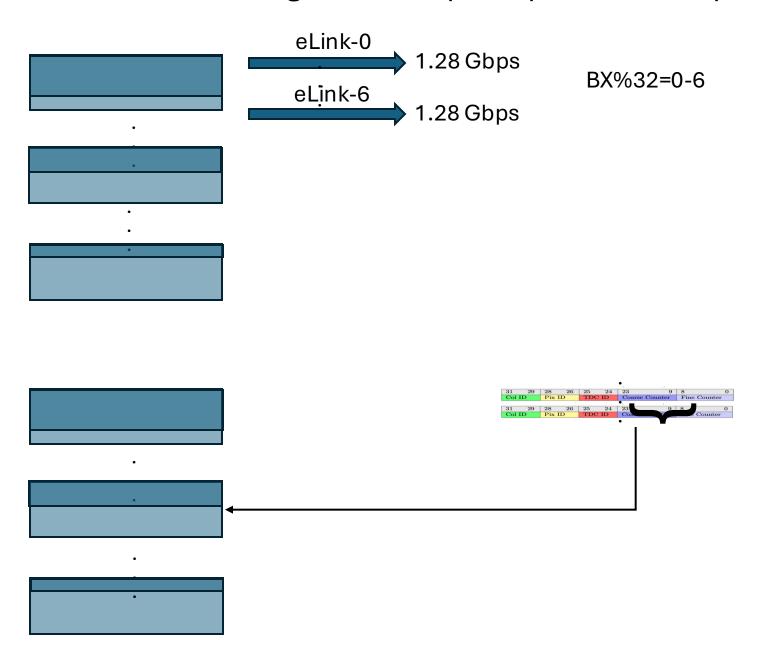

- 1. The first 24 ALCOR column streams (e.g., from FEB 0, 1, and 2) are mapped directly, one-to-one, to **eLinks 0 through 23**.
- 2. FEB 0, Col 0 -> eLink 0
- 3. ...
- 4. FEB 2, Col 7 -> eLink 23

2. Multiplexed Mapping (8 sources into 4 channels):

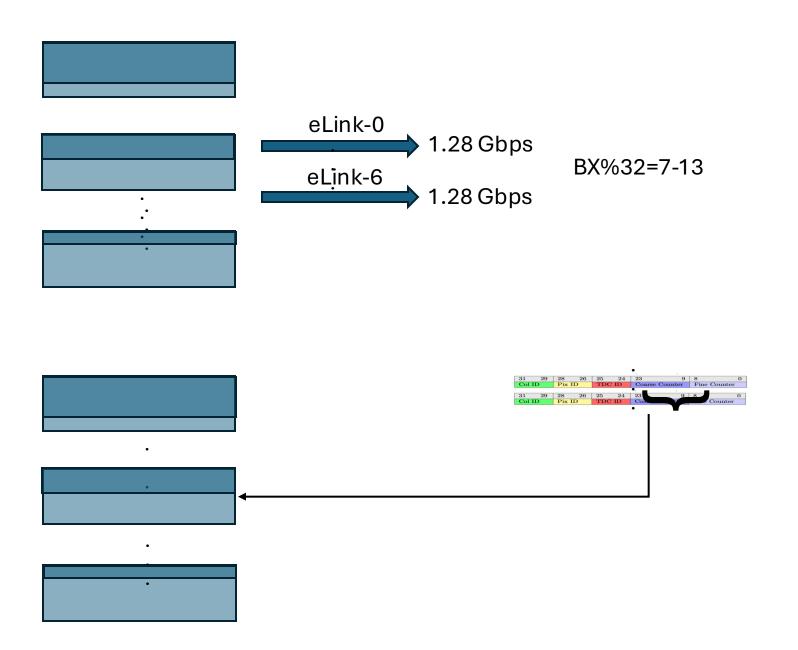

- 1. The remaining 8 ALCOR column streams (all from FEB 3) must be merged in pairs to be sent over the final 4 eLinks.
- 2. The RDO's FPGA will need logic to interleave or combine the data from two input streams into one output stream.
- 3. FEB 3, Col 0 + Col 1 -> eLink 24
- 4. FEB 3, Col 2 + Col 3 -> eLink 25
- 5. FEB 3, Col 4 + Col 5 -> eLink 26
- 6. FEB 3, Col 6 + Col 7 -> eLink 27
- Requisites for RDO firmware
 - Some little processing to ALCOR data format (shrink coarse counter, prepend FEB ID)
 - The FPGA firmware needs a **multiplexer (MUX)** block. This logic takes two 160 Mbps input streams (assuming the 320 Mbps eLink bandwidth is sufficient for two merged streams) and outputs a single 320 Mbps stream.

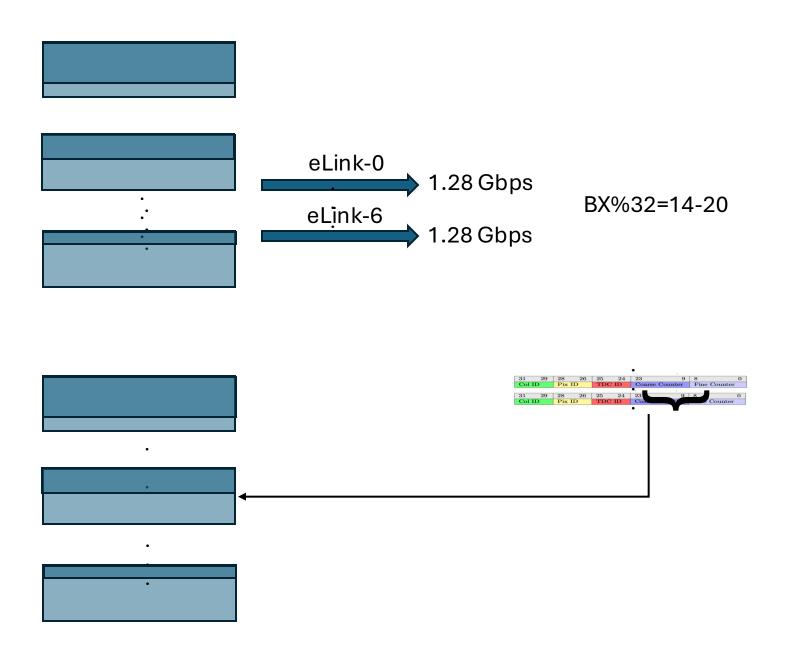

Data reduction: data format

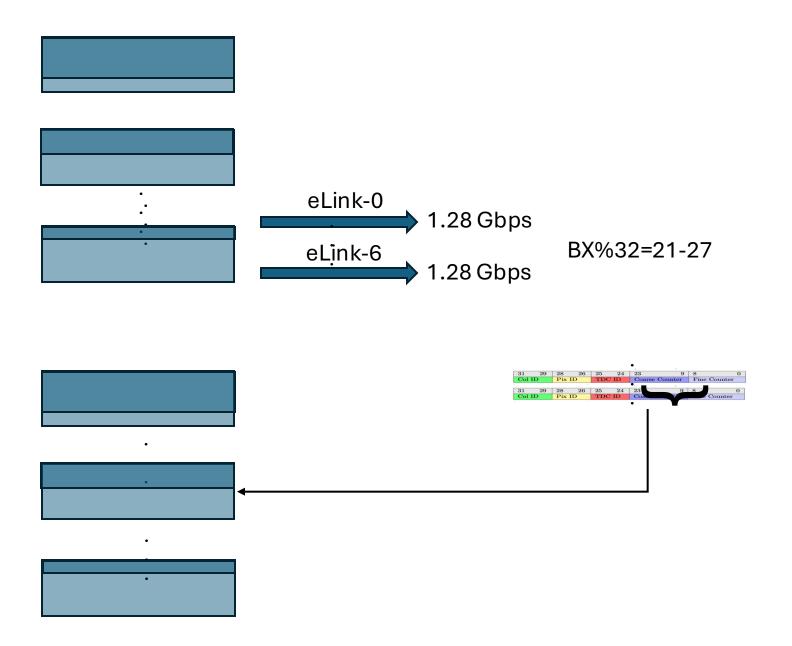
- 128 clock cycles max spread in same event hits ARE a problem
- 2 words for hit ARE a problem
- SOLUTION(?): buffer 32 BX on RDO, then send to DAM

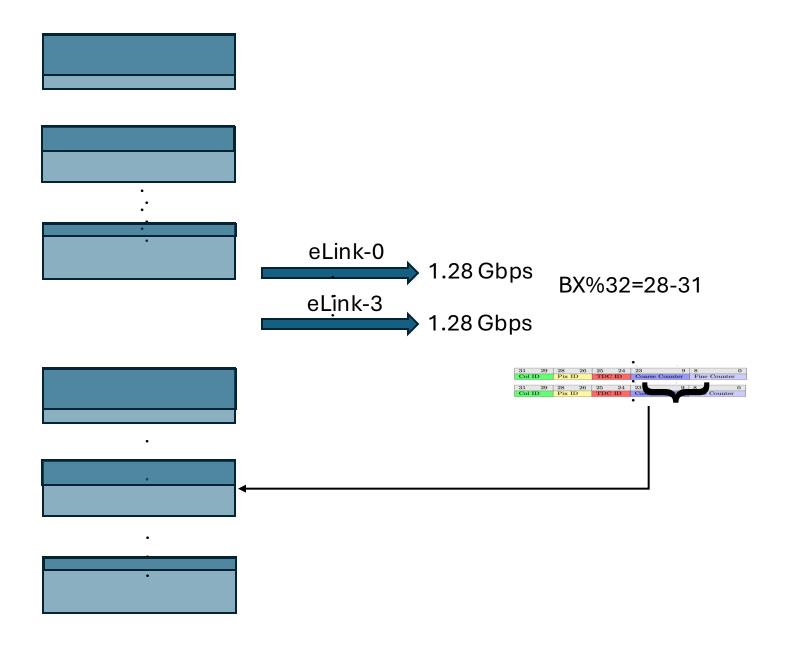


ALCOR BUS RDO to DAM




Buffering on RDO - lpGBT protocol for uplink (7 eLink @1.28 Gbps


Buffering on RDO - lpGBT protocol for uplink (7 eLink @1.28 Gbps


Buffering on RDO - lpGBT protocol for uplink (7 eLink @1.28 Gbps

Buffering on RDO - lpGBT protocol for uplink (7 eLink @1.28 Gbps

Buffering on RDO - lpGBT protocol for uplink (7 eLink @1.28 Gbps

Discussion on payload content

- Testbed format: can be useful as a starting point
- Coarse timestamp vs finetime
- Event fragment building:
 - Distributed: 4 (Alcor) x 8 (Columns) on RDO, 42 (Channels) on DAM
 - Centralized: 4 (Alcor) x 8 (columns) x 42 (channels) on DAM