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The precision adventure

DS recursive equations

How to avoid Feynman diagrams

→ a highly subjective point of view
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LO - Dyson-Schwinger Recursive Equations

From Feynman Diagrams to recursive equations: taming the n!
1999 HELAC: The first code to calculate recursively tree-order
amplitudes for (practically) arbitrary number of particles

→A. Kanaki and C. G. Papadopoulos, Comput. Phys. Commun. 132 (2000) 306 [arXiv:hep-ph/0002082].

→F. A. Berends and W. T. Giele, Nucl. Phys. B 306 (1988) 759.

→ F. Caravaglios and M. Moretti, Phys. Lett. B 358 (1995) 332.

'

&

$

%HEP - NCSR Democritos

The Dyson-Schwinger recursion

• Imagine a theory with 3- and 4- point vertices and just one field.

Then it is straightforward to write an equation that gives the

amplitude for 1 → n

= + +

+ + +

Unfortunately not so much on the second line !
→Integrals and Integrands
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Taming the beast ...

From Feynman graphs ...

gg → ng 2 3 4 5 6 7 8 9
# FG 4 25 220 2,485 34,300 559,405 10,525,900 224,449,225

to Dyson-Schwinger recursion! Helac-Phegas

gg → ng 2 3 4 5 6 7 8 9
# 5 15 35 70 126 210 330 495
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Beyond tree-order

NLO

Don’t make integrals, make integrands !
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The one loop paradigm

basis of scalar integrals: known already before NLO-R; remember this is not the case for higher orders

→G. ’t Hooft and M. J. G. Veltman, Nucl. Phys. B 153 (1979) 365.

→ Z. Bern, L. J. Dixon and D. A. Kosower, Nucl. Phys. B 412 (1994) 751

→G. Passarino and M. J. G. Veltman, Nucl. Phys. B 160 (1979) 151.

→Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Nucl. Phys. B 425 (1994) 217.

A =
∑

I⊂{0,1,··· ,m−1}

∫
µ(4−d)dd q̄

(2π)d
N̄I(q̄)∏

i∈I
D̄i(q̄)

A =
∑

di1 i2 i3 i4 +
∑

ci1 i2 i3 +
∑

bi1 i2 +
∑

ai1 + R

a, b, c, d → cut-constructible part R → rational terms
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The old “master” formula

A →
∫ N̄(q̄)

D̄0D̄1 · · · D̄m−1
=

m−1∑
i0<i1<i2<i3

d(i0i1i2i3)
∫ 1

D̄i0D̄i1D̄i2D̄i2

+
m−1∑

i0<i1<i2
c(i0i1i2)

∫ 1
D̄i0D̄i1D̄i2

+
m−1∑
i0<i1

b(i0i1)
∫ 1

D̄i0D̄i1

+
m−1∑

i0
a(i0)

∫ 1
D̄i0

+ rational terms
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OPP “master” formula - I

General expression for the 4-dim N(q) at the integrand level in terms of Di

→ G. Ossola, C. G. Papadopoulos and R. Pittau, [arXiv:hep-ph/0609007 [hep-ph]].

N(q) =
m−1∑

i0<i1<i2<i3

[
d(i0i1i2i3) + d̃(q; i0i1i2i3)

] m−1∏
i ̸=i0,i1,i2,i3

Di

+
m−1∑

i0<i1<i2
[c(i0i1i2) + c̃(q; i0i1i2)]

m−1∏
i ̸=i0,i1,i2

Di

+
m−1∑
i0<i1

[
b(i0i1) + b̃(q; i0i1)

] m−1∏
i ̸=i0,i1

Di

+
m−1∑

i0
[a(i0) + ã(q; i0)]

m−1∏
i ̸=i0

Di
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OPP R1

→G. Ossola, C. G. Papadopoulos and R. Pittau, JHEP 05 (2008), 004 [arXiv:0802.1876 [hep-ph]].

D̄i = (q̄ + pi)2 − m2
i , p0 ̸= 0 ,

D̄i = Di + q̃2

m2
i → m2

i − q̃2.

d(ijkl ; q̃2) = d(ijkl) + q̃2d (2)(ijkl) + q̃4d (4)(ijkl) ,

c(ijk; q̃2) = c(ijk) + q̃2c(2)(ijk) ,

b(ij ; q̃2) = b(ij) + q̃2b(2)(ij) .
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OPP R1

d (4)(ijkl) = lim
q̃2→∞

d(ijkl ; q̃2)
q̃4 ,

c(2)(ijk) = lim
q̃2→∞

c(ijk; q̃2)
q̃2 ,

b(2)(ij) = lim
q̃2→∞

b(ij ; q̃2)
q̃2 ,

d (4)(ijkl) = d(ijkl ; 1) + d(ijkl ; −1) − 2d(ijkl)
2 ,

c(2)(ijk) = c(ijk; 1) − c(ijk) ,

b(2)(ij) = b(ij ; 1) − b(ij) .

C.G.Papadopoulos (INPP) HOCTools-II mini-workshop 2025 Torino 11 / 61



OPP R1

∫
dnq̄ q̃4

D̄i D̄jD̄kD̄l
= − iπ2

6 + O(ϵ) ,∫
dnq̄ q̃2

D̄i D̄jD̄k
= − iπ2

2 + O(ϵ) ,

∫
dnq̄ q̃2

D̄i D̄j
= − iπ2

2

[
m2

i + m2
j − (pi − pj)2

3

]
+ O(ϵ) .
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OPP R1

R1 = − i
96π2 d (2m−4) − i

32π2

m−1∑
i0<i1<i2

c(2)(i0i1i2)

− i
32π2

m−1∑
i0<i1

b(2)(i0i1)
(

m2
i0 + m2

i1 − (pi0 − pi1)2

3

)
.
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OPP R2

→P. Draggiotis, M. V. Garzelli, C. G. Papadopoulos and R. Pittau, JHEP 04 (2009), 072 [arXiv:0903.0356 [hep-ph]].

→ M. V. Garzelli, I. Malamos and R. Pittau, JHEP 01 (2010), 040 [erratum: JHEP 10 (2010), 097]

N̄(q̄) = N(q) + Ñ(q̃2, q, ϵ) .

q̄ = q + q̃ ,

γ̄µ̄ = γµ + γ̃µ̃ ,

ḡ µ̄ν̄ = gµν + g̃ µ̃ν̃ .

R2 ≡ 1
(2π)4

∫
dn q̄ Ñ(q̃2, q, ϵ)

D̄0D̄1 · · · D̄m−1
≡ 1

(2π)4

∫
dn q̄ R2 .
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OPP R2
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OPP R2

ϵ-dimensional γ matrices freely anti-commute with four-dimensional ones:
{γµ, γ̃ν} = 0

N̄(q̄) ≡ e3
{

γ̄β̄ (/̄Q1 + me) γµ (/̄Q2 + me) γ̄β̄
}

= e3 {γβ(/Q1 + me)γµ(/Q2 + me)γβ

− ϵ (/Q1 − me)γµ(/Q2 − me) + ϵq̃2 γµ − q̃2 γβγµγβ
}

,

∫
dnq̄ q̃2

D̄0D̄1D̄2
= − iπ2

2 + O(ϵ) ,∫
dnq̄ qµqν

D̄0D̄1D̄2
= − iπ2

2ϵ
gµν + O(1) ,

gives

R2 = − ie3

8π2 γµ + O(ϵ) ,
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OPP R2

Computing 1PI contributions to R2 → R2 for any 1-loop amplitude

R2 vertices in full analogy with renormalization CT
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OPP@work

1 Determining the on-shell momenta through Di = 0 and computing all
coefficients.

2 Determining the on-shell momenta through Di = µ and µ dependence
of certain coefficients, namely R1.

3 Using new Feynman rules to compute with tree-like DS the rest of R
contribution, namely R2.

→ G. Ossola, C. G. Papadopoulos and R. Pittau, [arXiv:0802.1876 [hep-ph]].

→ M. V. Garzelli, I. Malamos and R. Pittau, [arXiv:0910.3130 [hep-ph]].
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Towards higher precision:

NNLO and beyond

I have a dream ...
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Perturbative QCD at NNLO

What do we need for an NNLO calculation ?

p1, p2 → p3, ..., pm+2
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Perturbative QCD at NNLO

What do we need for an NNLO calculation ?

σNNLO →
∫

m
dΦm

(
2Re(M(0)∗

m M(2)
m ) +

∣∣∣M(1)
m

∣∣∣2) Jm(Φ) VV

+
∫

m+1
dΦm+1

(
2Re
(

M(0)∗
m+1M(1)

m+1

))
Jm+1(Φ) RV

+
∫

m+2
dΦm+2

∣∣∣M(0)
m+2

∣∣∣2 Jm+2(Φ) RR

RV + RR → antenna-S, colorfull-NNLO, sector-improved residue subtraction, nested
soft-collinear, local analytic sector subtraction, projection to born, qT , N-jetiness

→A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, JHEP 1210 (2012) 047
→ P. Bolzoni, G. Somogyi and Z. Trocsanyi, JHEP 1101 (2011) 059

→ M. Czakon and D. Heymes, Nucl. Phys. B 890 (2014) 152
→S. Catani and M. Grazzini, Phys. Rev. Lett. 98 (2007) 222002

→ R. Boughezal, C. Focke, X. Liu and F. Petriello, Phys. Rev. Lett. 115 (2015) no.6, 062002
→ M. Cacciari, F. A. Dreyer, A. Karlberg, G. P. Salam and G. Zanderighi, Phys. Rev. Lett. 115, no. 8, 082002 (2015)

→ F. Caola, K. Melnikov and R. Röntsch, Eur. Phys. J. C 77, no. 4, 248 (2017)
→ L. Magnea, E. Maina, G. Pelliccioli, C. Signorile-Signorile, P. Torrielli and S. Uccirati, arXiv:1806.09570 [hep-ph].
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Amplitude construction

Amplitude construction
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Amplitude construction

Standard approach: Qgraf → symbolic manipulation, dimensionally
regularized amplitudes → IBP: FIRE, Kira or numerical pySecDec

Numerical unitarity → dimensionally regularized amplitudes by gluing
tree amplitudes in different integer dimensions → Ds

→ S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, M. Kraus, B. Page, E. Pascual, M. S. Ruf and V. Sotnikov, CPC 267 (2021), 108069

OpenLoops → Feynman graph → opening the loops → amplitudes in
d = 4 → coefficients of tensor integrals

→ S. Pozzorini, N. Schär and M. F. Zoller, [arXiv:2201.11615 [hep-ph]].

→ talk by Max Zoller
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HELAC Color treatment

Colour flow or colour connection representation

Ma1,i2,...,ik
j2,...,jk ta1

i1j1 → Mi1,i2,...,ik
j1,j2,...,jk

Mi1,i2,...,ik
j1,j2,...,jk =

∑
σ

δiσ1 ,j1δiσ2 ,j2 . . . δiσk ,jk Aσ → n!

gluons, ghosts → (i , j), quark → (i , 0), anti-quark → (0, j), other → (0, 0)∑
σ,σ′

A∗
σCσ,σ′Aσ′

Cσ,σ′ ≡
∑

{i},{j}
δiσ1 ,j1δiσ2 ,j2 . . . δiσk ,jk δiσ′

1
,j1δiσ′

2
,j2 . . . δiσ′

k
,jk = Nm(σ,σ′)

c
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HELAC2LOOP@work

Colour-flow Feynman rules

a b

c

p1 p2

p3

i1 j1 i2
j2

i3j3

i1j1 i2
j2

i3j3

a b

j1 i1 j2
i2

i4 j4 i3 j3

j1i1 j2
i2

j3
i3j4

i4

j1
i1 j2

i2

j3
i3j4i4

j1
i1 j2

i2

j3
i3j4i4

i1
j1

i4
j4

j3
i3

j2
i2 j1

i1 j2
i2

i3j3
j4

i4

cd

a b

c

p1 p2

p3

i1
j1 i2

j2

i3j3

i1
j1 i2

j2

i3j3

i j

µ, a

p1 p2

p3

j1i1

i2j2

j1i1

j2 i2
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HELAC2LOOP@work

BL1+L2+L3+LA

BL1+L2

BL1

B1

BL1+L2+L3

BL1+L2+L3+LA+LB

BL1+L2+1

B
(1)

L1+1

B
(1)

L1

B
(1)
1

B
(1)

L1+L2+2

B
(1)

L1+L2+1

Cut in k3-line

F1

F2

FL1

FL1+1
FL1+2

FL1+3

FL1+L2+1

FL1+L2+2

FL1+L2+3

FL1+L2+4

FL1+L2+L3+2

FL1+L2+L3+3

F
(1)
1 F

(1)
2

F
(1)
3

F
(1)

L2+1

F
(1)

L2+2
F

(1)

L2+3

F
(1)

L2+4

F
(1)

L1+L2+2

B
(1)

L1+2

BL1+1

2(n+1)

2n
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HELAC2LOOP@work

B
(1)

L1+1

B
(1)

L1+L2+1

B
(1)

L1

B
(1)
1

B
(1)

L1+L2+2

b
(1)

L1+L2−1

b
(1)

L1+L2

b
(1)
1

b
(1)

L1+L2+2

b
(1)

L1+L2+1

Reordering of blobs in

F
(1)
1

F
(1)

L1+L2+2

F
(1)

L2+4

F
(1)

L2+3
F

(1)

L2+2

F
(1)

L2+1

F
(1)
3

F
(1)
2

f
(1)
1 f

(1)
2

f
(1)
3

f
(1)
4

f
(1)
5

f
(1)
6

f
(1)

L1+L2+2

b
(1)

L1+L2

B
(1)

L1+2

in order for b
(1)
1

contain the particle 1
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HELAC2LOOP@work

1

2

4

8

12

2

1

4

8

16

32

12

color-dressingcut in k3-line

and flavor-dressing

j2
i2

j1
i1

j6 i6

i5 j5

i3j3

i4
j4

cut in the loop and

redefinition of colors

δ
i2
j1
δ
i3
j2
δ
i4
j3
δ
i7
j4
δ
i6
j5
δ
i8
j6
δ
i5
j7
δ
i1
j8

j1

j2
i2

i1 j8

i8
j7 i7

i5

j5

j6 i6

i3
j3

i4
j4 Dyson-Schwinger 1

128

2
4 8

32 16

64 1

2

4 8

128 32 16

64

δj7i8δ
j8
i7 δ

j5
i6 δ

j6
i5

Contractions

with CF = N2
c δ

i2
j1
δ
i3
j2
δ
i4
j3
δ
i1
j4
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HELAC2LOOP@work

Remark: Skeleton knows nothing about d : it can be used in d = 4 or any
other dimension including d = 4 − 2ϵ; symbolic output also possible.
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HELAC2LOOP@work
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HELAC2LOOP@work

Process # Loop-Flavors Color Size Crea.Time Nums
gg → gg 2 {g , c, c̄} Lead. 8.9 MB 15.017s 4560
gg → gg 2 {g , q, q̄, c, c̄} Full 110.6 MB 6m 54.574s 89392
gg → qq̄ 2 {g , q, q̄, c, c̄} Full 16.1 MB 3m 14.509s 13856
gg → ggg 2 {g , c, c̄} Lead. 300.0 MB 21m 42.609s 81480
gg → qq̄g 2 {g , q, q̄, c, c̄} Full 686.1 MB 400m 31.591s 318964
gg → gg 1 {g , q, q̄, c, c̄} Full 537.8 kB 2.386s 768
gg → ggg 1 {g , q, q̄, c, c̄} Full 15.1 MB 8m 53.349s 11496
gg → gggg 1 {g , c, c̄} Lead. 394.0 MB 104m 14.95s 19680

Table: Table containing information for the skeleton of some QCD processes at one- and two-loop. Therein, the column

# refers to the number of loops, Loop-Flavors denotes the flavor of the particles included in the loops, and Color indicates the

color order, with Lead. and Full referring to leading- and full-color approximation, respectively. The columns Size and

Crea.Time, indicate the size of the skeleton and the real-time consumed for its construction, respectively. The last column

(Nums) signifies the number of separate contributions (numerators) to the amplitude. These results have been obtained running

1-core on a laptop (i7 processor, 8-core, 24GB RAM).
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Integrand reduction

→ Bevilacqua, Giuseppe and Canko, Dhimiter and Papadopoulos, Costas and Spourdalakis, Aris„ hep-ph: 2506.07231

→ Talk in GGI 2024: → click to link
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OPP@2L with HELAC

A(L)({p}) =

G∑
g=1

(∫ L∏
i=1

[dki ]
N (k1, . . . , kL, {p})

D1 D2 · · · Dn

)
g

,

Extending the OPP approach to two loops, one can express the numerator N of a generic two-loop integrand in the following
form:

N = P(n) +

n∑
i=1

P(n−1)
i Di +

n−1∑
i=1

n∑
j>i

P(n−2)
ij Di Dj + . . . + P(0)

12...nD1D2 . . . Dn
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OPP@2L with HELAC

A generic 2-loop integrand can be written using the following scalar product set:

{pi · pj , ki · kj , ki · pj , ki · ηj }

P =

M∑
l=1

bl ml , (1)

where bi = bi ({p}) are coefficients which depend on the external kinematics, and the monomials mi are built upon the ISP
characteristic of each term.
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OPP@2L with HELAC

Focusing on the two-loop case, our goal is to decompose the amplitude, A(2), in terms of a set of Feynman integrals Fi and
coefficients ci that depend only on the external kinematics,

A(2) =
∑

i

ci ({p}) Fi , (2)

where the Fi ’s take the form

Fi ≡ F (a1, . . . , aN ) =

∫ 2∏
i=1

[dki ]
1

Da1
1 . . . DaN

N

, ai ∈ Z . (3)

→ V. Sotnikov, Thesis

This can be achieved by appropriately expressing the monomials ml in Eq. (1) in terms of the inverse propagators Di . Eq. (2) is

at the core of numerical methods for two-loop computations. Provided that the integrals Fi are known (or a procedure to reduce

the latter to a subset of master integrals is established), determining the coefficients ci at integrand level helps to address the

problem of two-loop computations in a general, process-independent way. This idea expands upon well-established methods

developed for one-loop calculations, such as OPP reduction.
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OPP@2L with HELAC

Linear fit and fit by cut approach

D1 = D2 = . . . = Dn = 0 , (4)

we can identify the coefficients of P(n),
P(n) = N |D1=D2=...=Dn=0 . (5)

Then we can iteratively fit the rest of the polynomials by appropriately subtracting the terms computed in the previous step. For
instance, the first next-to-maximal contribution reads

P(n−1)
1 =

(
N − N |D1=D2=...=Dn=0

D1

)∣∣∣
D2=...=Dn=0

, (6)

and so on. We note that cut equations, Eq. (4), translate into a system of linear relations among scalar products ki · kj and
ki · pj , where ki and pj denote generically loop and external momenta, respectively. This allows us to straightforwardly solve
Eq. (5), Eq. (6), and the rest of the equations resulting from all the sub-maximal cuts, by substitution rules, for any process. We
call this procedure of solving Eq. (1), a linear fit. We will show in the following sections how this applies to the case of 4-, 5-,
and 6-particle scattering amplitudes.
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OPP@2L with HELAC

In certain instances, the analytical calculation of the numerator N can prove to be a highly challenging task. In such cases,
resorting to a numerical computation, facilitated by dedicated software packages such as HELAC-2LOOP, can be a feasible
alternative. In this case, there are two issues to be addressed:

→ Canko, Dhimiter and Bevilacqua, Giuseppe and Papadopoulos, Costas, hep-ph:2309.14886

1 the solutions of cut equations must be expressed in a form suitable for numerical evaluation of numerators;
2 the polynomials P appearing in Eq. (1) must be constructed without a priori analytical knowledge of the numerator.

To address the first issue, we need a suitable representation of the loop momenta. Given two arbitrary massless momenta
lµ1 , lµ2 , let us define

lµ3 = ū−(l1)γµu−(l2) ,

lµ4 = ū−(l2)γµu−(l1) .
(7)

The set {lµ1 , lµ2 , lµ3 , lµ4 } forms a basis in d = 4 dimensions. This allows us to express the loop momenta k1, k2 as follows,

k1 = x1 l(1)
1 + x2 l(1)

2 + x3 l(1)
3 + x4 l(1)

4

k2 = y1 l(2)
1 + y2 l(2)

2 + y3 l(2)
3 + y4 l(2)

4

(8)

where the coefficients xi and yi are expressible in terms of scalar products of the form ki · pj . The latter coefficients characterize
the loop momenta in d = 4 dimensions. Complemented by µ11, µ12 and µ22 , they form a set of eleven variables which
characterizes completely the loop momenta in d = 4 − 2ϵ dimensions: X⃗ = {x1, x2, x3, x4, y1, y2, y3, y4, µ11, µ12, µ22}.
We solve cut equations in terms of these variables, as we will see later. In d = 4 − 2ϵ, the solution to the cut equations is
unique in terms of the ISP, whereas in d = 4 we usually have disjoint branches, see double box for an explicit example.

→ Badger, Simon and Frellesvig, Hjalte and Zhang, Yang, hep-ph:1202.2019

→ Kosower, David A. and Larsen, Kasper J., hep-th:1108.1180
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OPP@2L with HELAC

The parametrization of the polynomials P in terms of the ISP is obtained through the program BasisDet. The latter provides a
set of monomials which take the form

∏
i

x ri
i , where xi denote ISP and ri is an integer ranging from zero to some upper value

calculated from the maximal tensor rank of the polynomial P with respect to k1, k2 and k1, k2 combined.
→ Zhang, Yang, hep-ph:1205.5707

At one loop, P consists of terms depending solely on the external kinematics and the so-called spurious terms, which are specific

to each cut. The spurious terms, although necessary for the reduction at the integrand level, do not contribute to the final result

as they integrate to zero. The final result is determined by the coefficients that depend only on the external kinematics and

multiply the appropriately chosen basis of integrals. At two loops, the existence of spurious terms that integrate to zero is less

straightforward: there are certainly spurious terms compiled by the loop momenta and the transverse directions over the external

momenta, whenever present. Nevertheless, the simple one-loop picture is spoiled by the fact that the integrals in Eq. (3) obey a

set of IBP identities, resulting in a set of master integrals, which are then evaluated using different techniques.
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OPP@2L with HELAC
Returning to the solution of Eq. (1), let us first address the case of d = 4 − 2ϵ dimensions. The cut equations fix a subset of
the eleven parameters needed to fully describe the loop momenta. Assuming that the set of monomials mi (i = 1, . . . , M)
parametrizing a given polynomial P is established, then an M × M matrix, M, is obtained by evaluating the monomials on the
solution to the cut equation, by assigning M random values to the free parameters of the vector X⃗ , obtaining thus M instances
of it, i.e. X⃗j , j = 1, . . . , M, and then computing the elements of the matrix M, as follows: Mi,j ≡ mi (X⃗j ). The numerator
N (X⃗ , d) can be cast in the form

N ≡ N (X⃗ , d) = N0 +
∑
i≥1

ϵ
i N (i)

ϵ , (9)

by expanding in powers of ϵ ≡ (4 − d)/2, where both N0 ≡ N (X⃗ , d)|d=4 and N (i)
ϵ ≡ N (i)

ϵ (X⃗), are accessible numerically
and depending on µij through X⃗ . These terms are used to calculate, the M × 1 matrices, B(0)

j = N0(X⃗j ), B(i)
j = N (i)

ϵ (X⃗j ).
Then the given polynomial P is written explicitly as

P =

M∑
i=1

(
c(0)

i +
∑

ϵ
j c(j)

i

)
mi (10)

where
c⃗ (0) = M−1B(0) c⃗ (i) = M−1B(i) (11)

After the whole iterative procedure is completed, the so-called N = N test is performed. The latter consists of checking the
validity of Eq. (1) for arbitrary assignment of numerical values for all free parameters of the loop kinematics, X⃗ , not restricted by
cut equations. We have checked that the N = N test is fulfilled when the polynomials P are constructed directly from the
analytic expression of the numerator, as well as when using BasisDet to construct the ansatz for the polynomials.
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In d = 4 we obtain several disjoint solutions of the cut equations in terms of X⃗ (d=4) = {x1, x2, x3, x4, y1, y2, y3, y4}. On each
branch, we have checked analytically that the d = 4 numerator, N4,0 ≡ N (X⃗ , d)|µij =0,d=4, assumes a different form. On the
other hand, the set of monomials obtained previously in d = 4 − 2ϵ dimensions, contains linear dependencies due to the fact
that in d = 4 the two loop momenta and the three independent external momenta, in a 4-particle amplitude for instance, is an
over complete set and Gram determinants among them vanish, leading to non-trivial relations. In that case, the set of
monomials mi , i = 1, . . . , M, provided by BasisDet, is evaluated at each branch of the cut-equation solution. Assuming the
existence of r branches, the matrix M of size (rM) × M and the matrix B(4)

0 of size (rM) × 1, are calculated using
Mi,j ≡ mi (X⃗

(d=4)
j ), B(4)

0j ≡ N4,0(X⃗ (d=4)
j ), with i = 1, . . . , M, j = 1, . . . , rM. The system

M c⃗ (d=4) = B(4)
0 (12)

can still be solved with standard Linear Algebra algorithms such as QR decomposition, as long as the rank of the matrix is full,
namely rank(M) = M. As we will see later, this is true in most cases, but solutions can still be obtained in cases where the
matrix is rank-deficient, rank(M) < M. Notice that in d = 4 − 2ϵ case, when the information on the dependence of the
numerator on d and µij is available, the reduction of the amplitude is complete, whereas in four dimensions, where this
information is not available, the so-called rational terms need to be calculated in addition

→ Ossola, Giovanni and Papadopoulos, Costas G. and Pittau, Roberto, hep-ph: 0806.4600
→ Badger, S. D., hep-ph:0802.1876

→ Pozzorini, Stefano and Zhang, Hantian and Zoller, Max F., hep-ph: 2001.11388
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Projecting over a full family

From the perspective of the one-loop OPP approach, Eq. (1) addresses the reduction of the numerator in Eq. (1) in terms of the
n inverse propagators Di appearing in it. As we already pointed out, the one-loop case is special in the sense that the number of
independent scalar products N and the number of inverse propagators n obey the relation N ≤ n. Thus, all scalar products can
be expressed in terms of the Di ’s, which appear in the denominator of the loop integrand. Starting from two loops, N > n, and
thus one is left with a set of ISP that cannot be expressed as above. However, one can define an enlarged set of inverse
propagators such that all scalar products are expressible as combinations of the latter. This enlarged set of inverse propagators
is named family. We can consider projecting the numerator over the full family of inverse propagators:

N = P(N) +

N∑
i=1

P(N−1)
i Di +

N−1∑
i=1

N∑
j>i

P(N−2)
ij Di Dj + . . . + P(0)

12...N D1D2 . . . DN (13)
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Application of the method

The considered numerators are representative of a variety of scattering processes and consist of different kinematic
dependencies, ranging from four-point to six-point kinematics. For the generation of the analytic expressions required, we used
the Mathematica packages FeynArts and FeynCalc, except for the 6-particle case, which has been generated by FORM.
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Application of the method - double box

Here we focus on the numerator of the double-box topology constructed by the seven Feynman graphs depicted above. This
numerator contributes to the scattering amplitude of the process gg → gg .
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Application of the method - double box

The inverse propagators describing the family for this topology can be chosen as

D1 = k2
1 , D2 = (k1 + p1) 2

, D3 = (k1 + p12) 2
, D4 = (k1 + k2) 2

, D5 = k2
2 ,

D6 = (k2 − p123) 2
, D7 = (k2 − p12) 2

, D8 = (k2 − p1) 2
, D9 = (k1 + p123) 2

(14)

Above and henceforth, the shorthand notation pi...j = pi + . . . + pj will be used to denote the sum of the incoming external
on-shell momenta, and s = (p1 + p2)2 and t = (p2 + p3)2 the standard Mandelstam variables
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OPP@2L with HELAC: Linear fit

The maximal cut equations
D1 = D2 = D3 = D4 = D5 = D6 = D7 = 0 (15)

result in determining seven invariants

k1 · k1 → 0, k1 · k2 → 0, k1 · p1 → 0, k1 · p2 → −
s
2

, k2 · k2 → 0,

k2 · p2 →
s
2

− k2 · p1, k2 · p3 → −
s
2

.

(16)

By applying the above relation on both sides of the master equation, we can fully determine the polynomial P7. The latter
consists of 70 coefficients over the ISP monomials {k1 · p3, k1 · η, k2 · p1, k2 · η}.
Subtracting P7 in the master equation, we can now determine the polynomials of kind P6 in the same way. There are seven
six-cuts and therefore seven P6 polynomials to determine. As an example, the first six-cut,

D2 = D3 = D4 = D5 = D6 = D7 = 0 (17)

leads to
k2 · p2 →

s
2

− k2 · p1, k1 · p2 → −
s
2

, k2 · p3 → −
s
2

,

k1 · k2 → k1 · p1, k1 · k1 → −2k1 · p1, k2 · k2 → 0 ,

(18)

where there are now 5 ISP: {k1 · p2, k1 · p3, k1 · η, k2 · p1, k2 · η}. The polynomial P(6)
1 consists of 111 coefficients. This

process is iterated until the level of a two-cut, after which all resulting polynomials vanish.
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OPP@2L with HELAC

The data for all cuts are summarized in Tab. 2. The analytic solution for the polynomials satisfies explicitly the master equation.

Level Number of cuts Number of coefficients Scaling
7 1 70 4,4,4
6 7 695 3,3,4
5 21 1430 3,3,3
4 35 1017 2,2,2
3 35 225 1,1,1
2 21 9 0,0,0

Table: Double-box linear fit information beginning with 7-cut. The numbers in the last column refer to the maximum
powers of k1, k2, and k1, k2 combined, as described in the text.
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We now seek to solve the master equation, namely projecting over all 9 propagators in the double-box family. This has the
advantage of building a reduction procedure that covers all 4-particle planar diagrams, including the double-box, the
penta-triangle and the hexa-bubble. The maximal cut equations read

D1 = D2 = D3 = D4 = D5 = D6 = D7 = D8 = D9 = 0 (19)

which leads to
k1 · k1 → 0, k1 · k2 → 0, k1 · p1 → 0, k1 · p2 → −

s
2

, k1 · p3 →
s
2

,

k2 · k2 → 0, k2 · p1 → 0, k2 · p2 →
s
2

, k2 · p3 → −
s
2

(20)

By applying the above relations on both sides of the master equation, we can fully determine the polynomial P9. The latter
consists of 13 coefficients over the ISP monomials {k1 · η, k2 · η}. Subtracting as before P9, we can now determine the
polynomials P8 in the same way. There are nine 8-cuts and therefore nine P8 polynomials to determine. As an example, the first
8-cut,

D2 = D3 = D4 = D5 = D6 = D7 = D8 = D9 = 0 (21)

leads to
k2 · p1 → 0, k2 · p2 →

s
2

, k1 · p2 → −
s
2

, k2 · p3 → −
s
2

, k1 · p3 →
s
2

,

k1 · k2 → k1 · p1, k1 · k1 → −2k1 · p1, k2 · k2 → 0 ,

(22)

where there are now 3 ISP: {k1 · p1, k1 · η, k2 · η}.
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Level Number of cuts Number of coefficients Scaling
9 1 13 4,4,4
8 9 227 4,4,4
7 36 963 3,3,3
6 84 1445 2,2,2
5 126 780 1,1,1
4 126 116 0,0,0

Table: Double-box linear fit information beginning with 9-cut.

The data for all cuts are summarized in Tab. 3. The analytic solutions for the polynomials satisfy explicitly the master equation.
The total number of non-zero coefficients is slightly larger than previously, namely 3544 versus 3446. We have verified that after
reducing by IBP identities the integrals appearing in the previous equations, the coefficients of the top-sector master integrals
coincide with those obtained from Caravel, for all helicity assignments.

→ In Caravel the results are given for the color-stripped helicity amplitude, whereas in our case we have studied a subset of the
contributions to the amplitude. Nevertheless, a comparison of the top-sector master integral coefficients is possible since all
other Feynman graphs do not contribute to them.

→ Abreu, S. and Dormans, J. and Febres Cordero, F. and Ita, H. and Kraus, M. and Page, B. and Pascual, E. and Ruf, M.S. and Sotnikov, V.,

CPC,267(2021),108069.
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Fit by cut in d = 4 − 2ϵ dimensions
Let us now assume that the numerator is available only using a numerical approach, as the one implemented in HELAC-2LOOP,
including terms proportional to µij and ϵ = (d − 4)/2. Then the realization of the solutions of the cut equations, Eq. (16) in a
numerical setup is based on the determination of the four-dimensional part of the loop momenta following Eq. (8). In fact the
solution for any cut has a unique analytic form in terms of ISP. The 7 cut, Eq. (16), reads as follows:

k1 · p1 → 0, k2 · p2 →
1
2

(s − 2k2 · p1) , k1 · p2 → −
s
2

, k2 · p3 → −
s
2

,

µ11 → −
4s(k1·p3)2

s+t − 4sk1 · p3 + 4t (k1 · η) 2 + s(s + t)

4t
,

µ12 →
k1·p3(4(s+2t)k2·p1−2st)

s+t + t (s − 4k1 · η k2 · η) − 2sk2 · p1

4t
,

µ22 → −
4stk2 · p1 + 4s (k2 · p1) 2 + t

(
4(s + t) (k2 · η) 2 + st

)
4t(s + t)

(23)

For comparison, the cut conditions for 9 propagators, Eq. (20), are

k2 · p1 → 0, k1 · p1 → 0, k2 · p2 →
s
2

, k1 · p2 → −
s
2

,

k2 · p3 → −
s
2

, k1 · p3 →
s
2

, µ11 → − (k1 · η) 2 −
st

4(s + t)
,

µ12 →
st

4(s + t)
− k1 · ηk2 · η, µ22 → − (k2 · η) 2 −

st
4(s + t)

(24)
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In terms of the basis introduced before, i.e. {x1, . . . , x4, y1, . . . , y4, µ11, µ12, µ22}, the solution takes the form

x1 → −1, x2 → 0, y1 → 0, y2 → −1, µ11 → 4sx3x4, µ22 → 4sy3y4,

µ12 → (x3 + x4 − y3 − y4)r − 2(s + t)(x4y4 + x3y3) − 2t (x3y4 + x4y3) − t/2
(25)

with r =
√

−t(s + t). In a numerical setup, for instance, calculating on the kinematic point s = 1, t = −1/5, the 7-cut is
represented by

x1 → −1, x2 → 0, y1 → 0, y2 → −1, µ11 → 4x3x4, µ22 → 4y3y4,

µ12 → (4x3 (−4y3 + y4 + 1) + 4x4 (y3 − 4y4 + 1) − 4y3 − 4y4 + 1) /10
(26)

We can now determine the coefficients of the polynomial P7, which in this case has 70 coefficients, by calculating the numerator
N , and the monomials mi of the basis, using 70 random assignments of the undetermined variables, x3, x4, y3, y4, i.e. Ni and
Mij respectively, and solving the corresponding matrix equation

70∑
j=1

Mij cj = Ni , i = 1, . . . , 70 (27)

for the unknown coefficients c. The full-rank matrix M is straightforwardly invertible, and the solution checked agrees to the
numerical precision used against the analytic result. We have confirmed that this way we can calculate all the coefficients of
Tab. 2 numerically. The same is true for the case of projecting over the 9 propagators, see Tab. 3.

C.G.Papadopoulos (INPP) HOCTools-II mini-workshop 2025 Torino 49 / 61



Five-Point Kinematics/Penta-box topologies

Here we consider the numerator of the penta-box topology constructed by the seven Feynman graphs depicted below, which
contributes to the scattering amplitude of the process gg → ggg .
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Five-Point Kinematics/Penta-box topologies

D1 = k2
1 , D2 = (k1 + p1) 2

, D3 = (k1 + p12) 2
, D4 = (k1 + k2) 2

,

D5 = k2
2 , D6 = (k2 − p1234) 2

, D7 = (k2 − p123) 2
, D8 = (k2 − p12) 2

,

D9 = (k1 + p123) 2
, D10 = (k1 + p1234) 2

, D11 = (k2 − p1) 2

(28)

The external kinematics is described by 4 independent momenta and five independent invariants, which can be chosen to be
S5 = {s12, s23, s34, s45, s15}, where sij = (pi + pj )2. In order to proceed with the reduction in an analytic setup, the
expression of the numerator needs to be expressed in terms of the 11 invariants V11, defined as the set of variables ki · kj , with
i, j = 1, 2, and ki · pj with i = 1, 2, j = 1, . . . , 4. Since the analytic expression of the numerator involves the polarization
vectors of the external gluons, εi , i = 1, . . . , 5, scalar products of the form ki · εj and pi · εj need to be expressed in terms of
the set of variables S5 and V11. To this end, the following relation is used

qi · qj = G−1
kl qi · pk qj · pl (29)

where qi stands for any momentum or polarization vector and G denotes the Gram matrix, Gij = pi · pj , i, j = 1, . . . , 4
expressed in terms of the S5 variables. Barring that the analytic expression for the inverse Gram matrix and the numerator are
complicated expressions, it is convenient to work in a numerical setup, using exact arithmetic. The numerical values for the
variables S5, are chosen as

{
s12 → 1, s34 → 1

4 , s45 → 1
4 , s15 → − 1

4 , s23 → − 1
8

}
. The polarization vectors are defined by

ε
+
µ(pi ) =

1
√

2ū−(pi+1)u+(pi )
ū−(pi+1)γµu−(pi ) ε

−
µ (pi ) = −

1
√

2ū+(pi+1)u−(pi )
ū+(pi+1)γµu+(pi ) (30)

for i = 1, . . . , 5, where in the above formula the following the p6 → p1 identification is assumed. With the above
identifications, the numerator consists of monomials composed of the V11 variables, with exact numerical coefficients.
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The maximal cut is given by

k1 · k1 → 0, k1 · k2 → 0, k1 · p1 → 0, k1 · p2 → −
s12
2

, k2 · k2 → 0,

k2 · p2 →
s12
2

− k2 · p1, k2 · p3 →
s45
2

−
s12
2

, k2 · p4 → −
s45
2

(31)

The P8 polynomial consists of 50 terms, composed of monomials in the ISP variables {k1 · p3, k1 · p4, k2 · p1}. By following
the usual subtraction procedure the data of this solution are given in Tab. 4.

Level Number of cuts Number of coefficients Scaling
8 1 50 4,5,5
7 8 705 4,4,5
6 28 2550 4,4,4
5 56 3508 3,3,3
4 70 1902 2,2,2
3 56 348 1,1,1
2 28 12 0,0,0

Table: Penta-box linear fit information beginning with 8-cut.
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Seeking now to solve Eq. (??) the maximal cut is given by

k1 · k1 → 0, k1 · k2 → 0, k1 · p1 → 0, k1 · p2 → −
s12
2

, k1 · p3 →
s12
2

−
s45
2

,

k1 · p4 →
s45
2

, k2 · k2 → 0, k2 · p1 → 0, k2 · p2 →
s12
2

,

k2 · p3 →
s45
2

−
s12
2

, k2 · p4 → −
s45
2

(32)

and as before, the cut data are shown in Tab. 5.

Level Number of cuts Number of coefficients Scaling
11 1 1 0,0,0
10 11 47 3,4,4
9 55 502 3,4,4
8 165 2313 3,3,3
7 330 3715 2,2,2
6 462 2255 1,1,1
5 462 425 0,0,0

Table: Penta-box linear fit information beginning with 11-cut.
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Six-Point Kinematics/Six-gluon topology

In this subsection, we apply our method to the case of the six-gluon two-loop numerator topology. This graph is part of the
gg → gggg scattering amplitude.

We define the propagators of the family in which this topology belongs, as

D1 = k2
1 , D2 = (k1 + p1) 2

, D3 = (k1 + p12) 2
, D4 = (k1 + p123) 2

, D5 = (k1 + k2) 2
,

D6 = k2
2 , D7 = (k2 − p12345) 2

, D8 = (k2 − p1234) 2
, D9 = (k2 − p123) 2

,

D10 = (k1 + p1234) 2
, D11 = (k1 + p12345) 2

, D12 = (k2 − p12) 2
, D13 = (k2 − p1) 2
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Six-Point Kinematics/Six-gluon topology

Since out of the six external momenta only four are independent in d = 4 dimensions, not all 13 propagators in Eq. (54) are
independent. In general, for any n-point amplitude, with n ≥ 5, only 11 propagators are independent. We have chosen the
following subset, {D1, . . . , D10, D13} having expressed p5 in terms of p1, . . . , p4 through Eq. (29). As in the case of the
penta-box, section ??, the analytic expressions are hardly manageable, and it is convenient to work in a numerical setup, using
exact arithmetic. The numerical values of the invariants are chosen as 1{

s12 → 4, s23 → −1, s34 → 1, s45 →
5
4

, s56 →
1
2

, s16 → −1, s123 → 2, s234 → −1, s345 →
31
12

}
,

with sijk = (pi + pj + pk )2. For the polarization vectors we follow Eq. (30), with the identification of p7 → p1.
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The 9-cut
D1 = . . . = D9 = 0 (33)

is given, in the numerical point chosen, by

k1 · k1 → 0, k1 · k2 → 0, k1 · p1 → 0, k1 · p2 → −2, k1 · p3 → 1, k2 · k2 → 0,

k2 · p2 →
5
2

−
5k2 · p1

3
, k2 · p3 →

2k2 · p1
3

−
3
2

, k2 · p4 → −
3
4

(34)

The reduction data are given in Tab. 6.

Level Number of cuts Number of coefficients Scaling
9 1 21 4,4,6
8 9 355 4,4,6
7 36 1949 4,4,5
6 84 4462 4,4,4
5 126 4540 3,3,3
4 126 2016 2,2,2
3 84 334 1,1,1
2 36 16 0,0,0

Table: 6 gluon linear fit information beginning with 9-cut.
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Projecting over the set of 11 propagators, referred above, the 11-cut is given by

k1 · k1 → 0, k1 · k2 → 0, k1 · p1 → 0, k1 · p2 → −2, k1 · p3 → 1,

k1 · p4 →
3
4

, k2 · k2 → 0, k2 · p1 → 0, k2 · p2 →
5
2

,

k2 · p3 → −
3
2

, k2 · p4 → −
3
4

(35)

and the reduction data are summarized in Tab. 7.

Level Number of cuts Number of coefficients Scaling
11 1 1 0,0,0
10 11 41 3,3,3
9 55 505 3,3,5
8 165 2365 3,3,4
7 330 4780 3,3,3
6 462 4290 2,2,2
5 462 1592 1,1,1
4 330 200 0,0,0

Table: 6 gluon linear fit information beginning with 11-cut.
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Other contributions

Penta-triangle Hexa-bubble

Non-planar double box gg → tt̄ gg → tt̄H

→ Bevilacqua, Giuseppe and Canko, Dhimiter and Papadopoulos, Costas and Spourdalakis, Aris„ hep-ph: 2506.07231
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Mon, October 27

Full Classification of Feynman Integral Geometries at Two Loops
Contribution Speaker: Hjalte Frellesvig

10:30 AM 

10:00 AM 

|

Frontier of multi-loop multi-leg Feynman integrals
Contribution Speaker: Yang Zhang

11:00 AM 

10:30 AM 

|

Numerical methods for the evaluation of two-loop master integrals for
$pp \to t \bar{t} j$
Contribution Speaker: Michal Czakon

11:30 AM 

11:00 AM 

|

Two-loop integrand reduction
Contribution Speaker: Konstantinos Papadopoulos

12:00 PM 

11:30 AM 

|

Construction of two-loop amplitudes with HELAC
Contribution Speaker: Dhimiter Canko

12:45 PM 

12:15 PM 

|

Numerical evaluation of dimensionally regularized amplitudes
Contribution Speaker: Giuseppe Bevilacqua

1:15 PM 

12:45 PM 

|

Numerical implementation of integrand level reduction in HELAC
Contribution Speaker: Aris-George-Baldur Spourdalakis

1:45 PM 

1:15 PM 

|

Two-loop all-plus helicity amplitudes for self-dual Higgs boson with
gluons via unitarity cut constraints
Contribution Speaker: Federico Ripani

3:00 PM 

2:30 PM 

|

Two-loop Feynman integrals for NNLO QCD corrections to ttW
production
Contribution Speaker: Matteo Becchetti

3:30 PM 

3:00 PM 

|

Integral reduction & differential equations with CALICO
Contribution Speaker: Gaia Fontana

4:00 PM 

3:30 PM 

|

Two loop RGEs for Effective Field Theories
Contribution Speaker: Achillefs Lazopoulos

4:30 PM 

4:00 PM 

|

Mon, October 27
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Summary & Outlook

Current:
Integrand construction @2L → solved and implemented
Cut equations @2L: determining on-shell loop momenta → solved,
implementation in progress
Integrand basis construction and fitting @2L → solved,
implementation in progress →V. Sotnikov, doi:10.6094/UNIFR/151540

d = 4 − 2ϵ → implementation in progress for 1 loop
Near future:

d = 4 − 2ϵ → to be extended to 2 loops
IBP reduction tables and MI numerical evaluation

→ D. Chicherin and V. Sotnikov, JHEP 20 (2020), 167

→D. Chicherin, V. Sotnikov and S. Zoia, JHEP 01 (2022), 096

Next-to-near future: automated 2-loop amplitude evaluation
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