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OUTLINE

@ DS recursive equations — LO & AO
@ Review of the OPP approach — NLO
@ Constructing the 2-loop integrand — NNLO
@ Integrand reduction — NNLO

@ Summary & Outlook
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THE PRECISION ADVENTURE

DS recursive equations

How to avoid Feynman diagrams

— a highly subjective point of view
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LO - DYSON-SCHWINGER RECURSIVE EQUATIONS

From Feynman Diagrams to recursive equations: taming the n!
@ 1999 HELAC: The first code to calculate recursively tree-order
amplitudes for (practically) arbitrary number of particles
—A. Kanaki and C. G. Papadopoulos, Comput. Phys. Commun. 132 (2000) 306 [arXiv:hep-ph/0002082].
—F. A. Berends and W. T. Giele, Nucl. Phys. B 306 (1988) 759.

— F. Caravaglios and M. Moretti, Phys. Lett. B 358 (1995) 332.

PO

Unfortunately not so much on the second line !
—Integrals and Integrands
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TAMING THE BEAST ...

From Feynman graphs ... J

gg—ng 2 3 4 5 6 7 8 9
# FG 4 25 220 2,485 34,300 559,405 10,525,900 224,449,225

to Dyson-Schwinger recursion! Helac-Phegas J

gg—ng 2 3 4 5 6 7 8 9
# 5 15 35 70 126 210 330 495
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BEYOND TREE-ORDER

| NLO |

Don’t make integrals, make integrands !
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THE ONE LOOP PARADIGM

basis of scalar integrals: known already before NLO-R; remember this is not the case for higher orders

—G. 't Hooft and M. J. G. Veltman, Nucl. Phys. B 153 (1979) 365.
— Z. Bern, L. J. Dixon and D. A. Kosower, Nucl. Phys. B 412 (1994) 751
—G. Passarino and M. J. G. Veltman, Nucl. Phys. B 160 (1979) 151.

—Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Nucl. Phys. B 425 (1994) 217.
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a, b, c,d — cut-constructible part R — rational terms
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THE OLD “MASTER” FORMULA
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OPP “MASTER” FORMULA - |

General expression for the 4-dim N(q) at the integrand level in terms of DiJ

— G. Ossola, C. G. Papadopoulos and R. Pittau, [arXiv:hep-ph/0609007 [hep-ph]].
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OPP R;

—G. Ossola, C. G. Papadopoulos and R. Pittau, JHEP 05 (2008), 004 [arXiv:0802.1876 [hep-ph]].
D: = (g 32 m? 0
i (q + P:) m;, Po 7é )
D;=D; + 4
m,-2 — m,2 -3
d(ijkl; ) = d(ijkl) + §2d® (ijkl) + §*d™ (ijkl),

c(ijk; @) = c(ijk) + g P (ijK)
b(ij:a*) = b(ij) + §bP(ij).
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d®(jkl) = lim

C(z)(’jk) = lim

b(z)(’j) = lim

d®(ijkl) = d(ijkl; 1) + d(Uk2/; —1) — 2d(ijkl) |

bA(f) = b(iji1) — b(if).
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OPP R;
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i _ I ..
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—P. Draggiotis, M. V. Garzelli, C. G. Papadopoulos and R. Pittau, JHEP 04 (2009), 072 [arXiv:0903.0356 [hep-ph]].

— M. V. Garzelli, . Malamos and R. Pittau, JHEP 01 (2010), 040 [erratum: JHEP 10 (2010), 097]

N(G) = N(q) + N(&?, g, €).

g = q+4q,
’_Yﬁ = 7M+;}'/ﬁa

1 _ N(&,q,¢) 1 _
Ro= o [daz =20 = o [d"gR,.
= @m*) @ IBeby-- Dy (mA) T
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6:21=67+p1=Q1+q
Qr=q+p2=Q2+¢

Dy = ¢*
Dy = (g+p)?
Dy = (7+p2)2

Figure 1: QED veTe™ diagram in n dimensions.
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OPP R,

e-dimensional v matrices freely anti-commute with four-dimensional ones:
{’Y;u ;?u} =0

e {35 (R +me) 3 (R +me) 77}

= & {1p(Q + M) (2 + me)y”
= e(Q1r — me)yu (R — me) + €’ Yo — 7 '76'7;17'8} )

N(q)

~2 r 2
_ g i
ng—a = T 0,
/ 9 BoD: D, y O
2
n—= ququ — _i O]_
/ q_()DlD2 26 gIU/+ ( )7

gives
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OPP R,

Computing 1Pl contributions to R, — R» for any 1-loop amplitude

R vertices in full analogy with renormalization CT
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OPPQ@QwORK

@ Determining the on-shell momenta through D; = 0 and computing all
coefficients.

@ Determining the on-shell momenta through D; = p and i dependence
of certain coefficients, namely Rj.

@ Using new Feynman rules to compute with tree-like DS the rest of R
contribution, namely R.

— G. Ossola, C. G. Papadopoulos and R. Pittau, [arXiv:0802.1876 [hep-ph]].

— M. V. Garzelli, I. Malamos and R. Pittau, [arXiv:0910.3130 [hep-ph]].
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Towards higher precision:

NNLO and beyond
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PERTURBATIVE QCD AT NNLO

What do we need for an NNLO calculation ? )

P1, P2 — P3,---, Pm+2

T B
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PERTURBATIVE QCD AT NNLO

What do we need for an NNLO calculation ? J
0 2 1 2
omio | don (2Re(M M) + M| ) n(e) WV
m
+ dP i1 (2Re (Mf,?ﬁ/vlf,}jl)) Impi(®) RV
m+1
© |?
+ d®myi2 Mm+2 Imy2(P) RR
m+2

RV + RR — antenna-S, colorfull-NNLO, sector-improved residue subtraction, nested
soft-collinear, local analytic sector subtraction, projection to born, g7, N-jetiness

—A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, JHEP 1210 (2012) 047

— P. Bolzoni, G. Somogyi and Z. Trocsanyi, JHEP 1101 (2011) 059

— M. Czakon and D. Heymes, Nucl. Phys. B 890 (2014) 152

—S. Catani and M. Grazzini, Phys. Rev. Lett. 98 (2007) 222002

— R. Boughezal, C. Focke, X. Liu and F. Petriello, Phys. Rev. Lett. 115 (2015) no.6, 062002

— M. Cacciari, F. A. Dreyer, A. Karlberg, G. P. Salam and G. Zanderighi, Phys. Rev. Lett. 115, no. 8, 082002 (2015)
— F. Caola, K. Melnikov and R. Réntsch, Eur. Phys. J. C 77, no. 4, 248 (2017)

— L. Magnea, E. Maina, G. Pelliccioli, C. Signorile-Signorile, P. Torrielli and S. Uccirati, arXiv:1806.09570 [hep-ph].
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AMPLITUDE CONSTRUCTION

Amplitude construction
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AMPLITUDE CONSTRUCTION

e Standard approach: QGRAF — symbolic manipulation, dimensionally
regularized amplitudes — IBP: FIRE, Kira or numerical pySecDec

@ Numerical unitarity — dimensionally regularized amplitudes by gluing
tree amplitudes in different integer dimensions — Ds

— S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, M. Kraus, B. Page, E. Pascual, M. S. Ruf and V. Sotnikov, CPC 267 (2021), 108069

@ OpenlLoops — Feynman graph — opening the loops — amplitudes in
d = 4 — coefficients of tensor integrals
— S. Pozzorini, N. Schir and M. F. Zoller, [arXiv:2201.11615 [hep-ph]]

— talk by Max Zoller
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HELAC COLOR TREATMENT

Colour flow or colour connection representation

31:’27 ’k al ’1:’2» ’k
MJ iy — MJ1 25k

’1 125 . .
.117_/27 26’017_/1 IO‘27J2 6lak,_[kAO' — nl

gluons, ghosts — (i,/), quark — (i,0), anti-quark — (0, j), other — (0,0)
> AiCooAs

= > Qi it Oiryoda = Oy Oy Oy - - Oy i = NZ)
usn;

C.G.Papadopoulos (INPP) HOCTools-Il mini-workshop 2025 Torino



HELAC2LOOPQ@QWORK

Colour-flow Feynman rules
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HELAC2LOOPQ@QWORK

BLy+LotLg+la

. o Cutinig .
F
By

BLi+Lo

(1)
BLitrote

BLy+LotLa+Latls
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HELAC2LOOPQ@QWORK

o
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HELAC2LOOPQ@QWORK

jith  Cp — N2g5035i151
with  Cp = N25R65367101)
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HELAC2LOOPQ@QWORK

INFO NUM 110 of 332 7

INFO

INFO 4 80 35 9 1 1 16 35 5 64 35 7 0O 0 0 0 1 2
INFO 4 12 35 10 1 1 4 3 3 8 3 4 0 0 0 0 1 1
INFO 4 92 35 11 1 2 12 35 10 80 35 9 © © o o 1 1
INFO 5 92 35 11 2 2 4 3 3 8 3 4 80 3 9 o0 1 5
INFO 4 124 35 12 1 1 32 35 6 92 35 11 6 o o o 1 2
INFO 4 126 35 13 1 1 2 3 2124 35 12 0 0 0 0 1 1
INFO 4 254 35 14 1 1128 35 8126 35 13 @ 0O 0 0 1 2
INFO 6 1 12 1 2 12 35 35 35 35 35 3 0 o0 o o 5 9

Remark: Skeleton knows nothing about d: it can be used in d = 4 or any
other dimension including d = 4 — 2¢; symbolic output also possible.
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HELAC2LOOPQ@QWORK

Start: A given process

tep 1: Do-loop o two-Ioop master
e blob-topologies (Thetas, Ifintes, Dumbbells)
Step 2: Dar-loop on the possible fiavor of
the firs setof cut partcles.
- Fora chosen
favor

blob-topology

Step 3: Do-loop on the corresponding.
(1+-2)-prtcle color sates
Fora chosen |
color-state 4
Step 4: Do-loop on the (two-loop) blob-topologies.
(ofthe corresponding master blob-(opology)

Fora chosen
blob-topology
tep 5: Cat and matching t0 an

(n+2) paricte one-loop blob-opology

Step 6: Dressing with flavor and color (via
Do-loops) of the one-loop biob-topology =
F e many resulted configuraions in his way.
confguration
Step 7: Cut and creation of an (n+4) particle
rec-levelconfiguraton,
properly rearanged

Step8: Creation of a sequence of sub-amplitudes by applying

tep 9: Projection of the (n+4)partcle colorstate o an
n-parice color-sate, and dentification o the powers of N,

1)
Step 10: Sorage inthe skeleton, a5  contribution o the amplitude,
of the topological information, the sub-amplitude sructure,the
color-stat, and the powers of N, forthe configuration at hand

Step 1 Repettion of al the above steps foral possble
al loops

'

End: Skeleton consiruction
‘consistingal the configurations
contributing o the twa-loop
amplitude ofthe given process
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HELAC2LOOPQ@QWORK

gg —gg | 2 Lead. | 8.9 MB 15.017s 4560
gg — gg 2 | {g,9,q,c,¢} Full 110.6 MB 6m 54.574s 89392
gg — qq 2 {g,q9,9,c,c} Full 16.1 MB 3m 14.509s 13856
gg — ggg 2 {g,c,c} Lead. | 300.0 MB 21m 42.609s 81480
g > qag | 2 | 1€,9,3,,8) | Full | 686.1 MB | 400m 31.591s | 318964
gg — gg 1 {g,q9,9,c,c} Full 537.8 kB 2.386s 768
gg — ggg 1 | {g,9,G,¢c,¢c} Full 15.1 MB 8m 53.349s 11496
gg —gggg | 1 {g,c,c} Lead. | 394.0 MB 104m 14.95s 19680

TABLE: Table containing information for the skeleton of some QCD processes at one- and two-loop. Therein, the column
# refers to the number of loops, Loop-Flavors denotes the flavor of the particles included in the loops, and Color indicates the
color order, with Lead. and Full referring to leading- and full-color approximation, respectively. The columns Size and

Crea. Time, indicate the size of the skeleton and the real-time consumed for its construction, respectively. The last column
(Nums) signifies the number of separate contributions (numerators) to the amplitude. These results have been obtained running

1-core on a laptop (i7 processor, 8-core, 24GB RAM).
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Integrand reduction

— Bevilacqua, Giuseppe and Canko, Dhimiter and Papadopoulos, Costas and Spourdalakis, Aris, hep-ph: 2506.07231

— Talk in GGI 2024: — click to link
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https://www.ggi.infn.it/talkfiles/slides/slides6727.pdf

OPP@2L witH HELAC

(ki, ...,k
A =" /H[dk] 5 = Ml del) )
g

Extending the OPP approach to two loops, one can express the numerator A of a generic two-loop integrand in the following

form:
n n—1 n
_ (n—1) (n—2) (0)
N =P E P VD + E E Py TDiDj+ ...+ P DiD2 ... Dy

i=1 =1 j>i
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OPP@2L witH HELAC

A generic 2-loop integrand can be written using the following scalar product set:

{pi - pjs ki - kjs ki = pj, ki - mj}

M
P:Z by my, M

I=1

where b; = b;({p}) are coefficients which depend on the external kinematics, and the monomials m; are built upon the ISP
characteristic of each term.
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OPP@2L witH HELAC

Focusing on the two-loop case, our goal is to decompose the amplitude, .A(z), in terms of a set of Feynman integrals F; and
coefficients ¢; that depend only on the external kinematics,

A =N et A, (2)

i

where the F;'s take the form

2
1
F,-EF(al,H.,aN):/l I[dk,-]w, aj €. 3)
i=1 ! N

— V. Sotnikov, Thesis
This can be achieved by appropriately expressing the monomials m; in Eq. (1) in terms of the inverse propagators D;. Eq. (2) is
at the core of numerical methods for two-loop computations. Provided that the integrals F; are known (or a procedure to reduce
the latter to a subset of master integrals is established), determining the coefficients ¢; at integrand level helps to address the
problem of two-loop computations in a general, process-independent way. This idea expands upon well-established methods

developed for one-loop calculations, such as OPP reduction.
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OPP@2L witH HELAC

Linear fit and fit by cut approach
Di=Dy=...=D,=0, (4)

we can identify the coefficients of P("),

Pl = Nlpy=p,=...=Dy=0 - (%)

Then we can iteratively fit the rest of the polynomials by appropriately subtracting the terms computed in the previous step. For
instance, the first next-to-maximal contribution reads

pln—1) _ N = Nlp;=py=...=Dp=0
1 Dy

Dy=...=Dp=0

and so on. We note that cut equations, Eq. (4), translate into a system of linear relations among scalar products k; - k; and

ki - pj, where k; and p; denote generically loop and external momenta, respectively. This allows us to straightforwardly solve
Eq. (5), Eq. (6), and the rest of the equations resulting from all the sub-maximal cuts, by substitution rules, for any process. We
call this procedure of solving Eq. (1), a linear fit. We will show in the following sections how this applies to the case of 4-, 5-,
and 6-particle scattering amplitudes.
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OPP@2L witH HELAC

In certain instances, the analytical calculation of the numerator A/ can prove to be a highly challenging task. In such cases,
resorting to a numerical computation, facilitated by dedicated software packages such as HELAC-2L0OOP, can be a feasible
alternative. In this case, there are two issues to be addressed:

— Canko, Dhimiter and Bevilacqua, Giuseppe and Papadopoulos, Costas, hep-ph:2309.14886

o the solutions of cut equations must be expressed in a form suitable for numerical evaluation of numerators;
e the polynomials P appearing in Eq. (1) must be constructed without a priori analytical knowledge of the numerator.

To address the first issue, we need a suitable representation of the loop momenta. Given two arbitrary massless momenta

Il“, 12“, let us define
1 = 5 (v u_ (), .
I =u_(k)y"u_(h).
The set {11“, /2“7 /3”, If} forms a basis in d = 4 dimensions. This allows us to express the loop momenta ki, kp as follows,
k= x1 1 40 0 4 g 1§ 4 1V ©
o =11 4y 1P 4y 12 4 yy 1P

where the coefficients x; and y; are expressible in terms of scalar products of the form k; - p;. The latter coefficients characterize
the loop momenta in d = 4 dimensions. Complemented by 111, p12 and pos , they form a set of eleven variables which
characterizes completely the loop momenta in d = 4 — 2¢ dimensions: X = {X1, X0, X3, X4, Y1, Y2, Y3, Y4, 4115 12, 422 }-
We solve cut equations in terms of these variables, as we will see later. In d = 4 — 2¢, the solution to the cut equations is
unique in terms of the ISP, whereas in d = 4 we usually have disjoint branches, see double box for an explicit example.

— Badger, Simon and Frellesvig, Hjalte and Zhang, Yang, hep-ph:1202.2019

— Kosower, David A. and Larsen, Kasper J., hep-th:1108.1180
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OPP@2L witH HELAC

The parametrization of the polynomials P in terms of the ISP is obtained through the program BasisDet. The latter provides a
set of monomials which take the form H X; "I where x; denote ISP and r; is an integer ranging from zero to some upper value
calculated from the maximal tensor rank of the polynomial P with respect to ki, ko and ky, ko combined.

— Zhang, Yang, hep-ph:1205.5707

At one loop, P consists of terms depending solely on the external kinematics and the so-called spurious terms, which are specific
to each cut. The spurious terms, although necessary for the reduction at the integrand level, do not contribute to the final result
as they integrate to zero. The final result is determined by the coefficients that depend only on the external kinematics and
multiply the appropriately chosen basis of integrals. At two loops, the existence of spurious terms that integrate to zero is less
straightforward: there are certainly spurious terms compiled by the loop momenta and the transverse directions over the external
momenta, whenever present. Nevertheless, the simple one-loop picture is spoiled by the fact that the integrals in Eq. (3) obey a

set of IBP identities, resulting in a set of master integrals, which are then evaluated using different techniques.
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OPP@2L witH HELAC

Returning to the solution of Eq. (1), let us first address the case of d = 4 — 2¢ dimensions. The cut equations fix a subset of
the eleven parameters needed to fully describe the loop momenta. Assuming that the set of monomials m; (i =1, ..., M)
parametrizing a given polynomial P is established, then an M X M matrix, M, is obtained by evaluating the monomials on the
solution to the cut equation, by assigning M random values to the free parameters of the vector X, obtaining thus M instances
of it, i.e. )?j, j=1,..., M, and then computing the elements of the matrix M, as follows: M, ; = m;()?j). The numerator

N(X, d) can be cast in the form
N =N(KK, d) = No + E NG )
i>1

by expanding in powers of € = (4 — d)/2, where both Ny = N(X, d)|g—4 and Ne(i) = Ne(i)()?), are accessible numerically
and depending on pj; through X. These terms are used to calculate, the M x 1 matrices, BJ(_O) = No()?]) ij = Nil)(xj).
Then the given polynomial P is written explicitly as

M

-y (C,@ 23 c,@) m (10)

i=1

where

e@ =m0 2= A0 (11)

After the whole iterative procedure is completed, the so-called N = N test is performed. The latter consists of checking the
validity of Eq. (1) for arbitrary assignment of numerical values for all free parameters of the loop kinematics, X, not restricted by
cut equations. We have checked that the N = N test is fulfilled when the polynomials P are constructed directly from the
analytic expression of the numerator, as well as when using BasisDet to construct the ansatz for the polynomials.
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OPP@2L witH HELAC

In d = 4 we obtain several disjoint solutions of the cut equations in terms of X(d=4) — {x1,x2,x3,%a,¥1,¥2,¥3,ya}. On each

branch, we have checked analytically that the d = 4 numerator, N3 o = N()?, d)‘uij:OVd:“’ assumes a different form. On the
other hand, the set of monomials obtained previously in d = 4 — 2e dimensions, contains linear dependencies due to the fact
that in d = 4 the two loop momenta and the three independent external momenta, in a 4-particle amplitude for instance, is an
over complete set and Gram determinants among them vanish, leading to non-trivial relations. In that case, the set of

monomials m;, i =1,..., M, provided by BasisDet, is evaluated at each branch of the cut-equation solution. Assuming the
existence of r branches, the matrix M of size (rM) X M and the matrix B((f) of size (rM) X 1, are calculated using
M= m;()?j?d:4)), B((;;.) = /\/’410()4(].(‘1:4)), withi=1,...,M, j=1,...,rM. The system

Me =8 — gt (12)

can still be solved with standard Linear Algebra algorithms such as QR decomposition, as long as the rank of the matrix is full,
namely rank(M) = M. As we will see later, this is true in most cases, but solutions can still be obtained in cases where the
matrix is rank-deficient, rank(M) < M. Notice that in d = 4 — 2¢ case, when the information on the dependence of the
numerator on d and Wij is available, the reduction of the amplitude is complete, whereas in four dimensions, where this
information is not available, the so-called rational terms need to be calculated in addition

— Ossola, Giovanni and Papadopoulos, Costas G. and Pittau, Roberto, hep-ph: 0806.4600
— Badger, S. D., hep-ph:0802.1876
— Pozzorini, Stefano and Zhang, Hantian and Zoller, Max F., hep-ph: 2001.11388
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PROJECTING OVER A FULL FAMILY

From the perspective of the one-loop OPP approach, Eq. (1) addresses the reduction of the numerator in Eq. (1) in terms of the
n inverse propagators D; appearing in it. As we already pointed out, the one-loop case is special in the sense that the number of
independent scalar products N and the number of inverse propagators n obey the relation N < n. Thus, all scalar products can
be expressed in terms of the D;'s, which appear in the denominator of the loop integrand. Starting from two loops, N > n, and
thus one is left with a set of ISP that cannot be expressed as above. However, one can define an enlarged set of inverse
propagators such that all scalar products are expressible as combinations of the latter. This enlarged set of inverse propagators
is named family. We can consider projecting the numerator over the full family of inverse propagators:

N N—1 N
N=pPM 4 E PN =Up; 4 E E PN 4. +PQ DDy Dy (13)
ij 12...N
i=1 =1 j>i
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APPLICATION OF THE METHOD

The considered numerators are representative of a variety of scattering processes and consist of different kinematic
dependencies, ranging from four-point to six-point kinematics. For the generation of the analytic expressions required, we used
the Mathematica packages FeynArts and FeynCalc, except for the 6-particle case, which has been generated by FORM.
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APPLICATION OF THE METHOD - DOUBLE BOX

Here we focus on the numerator of the double-box topology constructed by the seven Feynman graphs depicted above. This

numerator contributes to the scattering amplitude of the process gg — gg.

ogac0od
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APPLICATION OF THE METHOD - DOUBLE BOX

The inverse propagators describing the family for this topology can be chosen as

2 2 2 2 2
Dy =ki, Dy=(ki+p1)° D3=(ki+p2)°, Ds=(ki+k)", Ds=kj,

(14)
2 2 2 2
Dg = (k2 — p123)“, D7 = (kg — p12)°, Dg = (ko — p1)°, Dy = (ki + p123)

Above and henceforth, the shorthand notation p; . j = p; + ... + pj will be used to denote the sum of the incoming external
on-shell momenta, and s = (py + p2)? and t = (p + p3)? the standard Mandelstam variables
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OPP@2L witH HELAC: LINEAR FIT

The maximal cut equations
D)y =Dy =D3 =Dy =Ds =Dg =D7 =0 (15)

result in determining seven invariants

s
ki -ki — 0, ki-k —0, ki-pp —0, k1<p24>—2, ky - kp — 0,

(16)

s s
k2‘P2—>£*k2-P1, kz‘P3—>*5-

By applying the above relation on both sides of the master equation, we can fully determine the polynomial P7. The latter
consists of 70 coefficients over the ISP monomials {ky - p3, ki - 71, ko - p1, ko - m}.

Subtracting P7 in the master equation, we can now determine the polynomials of kind Pg in the same way. There are seven
six-cuts and therefore seven Pg polynomials to determine. As an example, the first six-cut,

Dy=D3=D4=Ds=Dg=D; =0 @)

leads to s s s
ky pp— - —k-p1, ki-pp——=, k-p3—>—-,
2 2 2 (18)

ki-ky = ki-p1, ki-ki— —2ki-p1, kp-ky—0,

where there are now 5 ISP: {ky - p2, ki - p3, k1 - m, ko - p1, ko - n}. The polynomial P{G) consists of 111 coefficients. This
process is iterated until the level of a two-cut, after which all resulting polynomials vanish.
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The data for all cuts are summarized in Tab. 2. The analytic solution for the polynomials satisfies explicitly the master equation.

Level Number of cuts Number of coefficients Scaling
7 1 70 4,44
6 7 695 3,34
5 21 1430 3,33
4 35 1017 2,2,2
3 35 225 111
2 21 9 0,0,0

TABLE: Double-box linear fit information beginning with 7-cut. The numbers in the last column refer to the maximum
powers of ki, ka, and ki, ko combined, as described in the text.
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OPP@2L witH HELAC

We now seek to solve the master equation, namely projecting over all 9 propagators in the double-box family. This has the
advantage of building a reduction procedure that covers all 4-particle planar diagrams, including the double-box, the
penta-triangle and the hexa-bubble. The maximal cut equations read

Dy =Dy=D3=Dy=Ds=Dg=D; =Dg =Dy =0 (19)

which leads to s s
ki-ki —0, ki-kx—0, ki-p1 =0, ki-pp—>—=, ki-p3— -,
2 2 (20)

s s
ky-ky =0, ky-p;g — 0, k2~p2~>5, k2~p3~>75

By applying the above relations on both sides of the master equation, we can fully determine the polynomial Pg. The latter
consists of 13 coefficients over the ISP monomials {kj - 7, kp - n}. Subtracting as before Pg, we can now determine the
polynomials Pg in the same way. There are nine 8-cuts and therefore nine Pg polynomials to determine. As an example, the first
8-cut,

Dy=D3 =Dy =Ds=Dg=D;=Dg=Dg=0 (21)

leads to
k: — 0, ky-py— : ki - pp — : ko - p3 — : ki - p3 — :
> p1 > Py — — . _2 . _2 . 2
) 3 3 3 3 3= o 22)
ki ky = ki p1, ki-ki— —2ki-p1, kp-kp =0,

where there are now 3 ISP: {k; - p1, ki - n, ko - n}.
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Level Number of cuts Number of coefficients Scaling
9 1 13 144
8 9 227 4,44
7 36 963 3,33
6 84 1445 2,22
5 126 780 11,1
4 126 116 0,0,0

TABLE: Double-box linear fit information beginning with 9-cut.

The data for all cuts are summarized in Tab. 3. The analytic solutions for the polynomials satisfy explicitly the master equation.
The total number of non-zero coefficients is slightly larger than previously, namely 3544 versus 3446. We have verified that after
reducing by IBP identities the integrals appearing in the previous equations, the coefficients of the top-sector master integrals
coincide with those obtained from Caravel, for all helicity assignments.

— In Caravel the results are given for the color-stripped helicity amplitude, whereas in our case we have studied a subset of the
contributions to the amplitude. Nevertheless, a comparison of the top-sector master integral coefficients is possible since all
other Feynman graphs do not contribute to them.

— Abreu, S. and Dormans, J. and Febres Cordero, F. and Ita, H. and Kraus, M. and Page, B. and Pascual, E. and Ruf, M.S. and Sotnikov, V.,

CPC,267(2021),108069.
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FIT BY cUT IN d = 4 — 2¢ DIMENSIONS

Let us now assume that the numerator is available only using a numerical approach, as the one implemented in HELAC-2L0OP,
including terms proportional to pj; and € = (d — 4)/2. Then the realization of the solutions of the cut equations, Eq. (16) in a
numerical setup is based on the determination of the four-dimensional part of the loop momenta following Eq. (8). In fact the
solution for any cut has a unique analytic form in terms of ISP. The 7 cut, Eq. (16), reads as follows:

1 s s
ki - p1 — 0, kz'P2—>E(S—2k2‘P1)7 ki p2 = —=, kz-P3—>—5,
4s(ky -p3)2

P sk py 44t (k) s(s + 1)
H11 — — 2t »

k1 -p3(4(s+2t)kp-py —2st)
t

(23)
P +t(s— 4k -nky - n) —2sky - py
B2 —

4t ’
4sthky - py +4s(ky - p1)2 + t (4(5 +t) (ko -m)2 + st)

4t(s + t)

p22 = —

For comparison, the cut conditions for 9 propagators, Eq. (20), are

ky-p1 =0, ki-p1—0, kz'P2—>§, k1~P2—>—§,
k2'P3%*iy k1'P3%i» Mlﬁ*(h'n)zfiy (24)
2 2 As+t)
st 2 st
Mlz"m*kl"ﬂ@"’?; w2 — — (ko - m) 774(s+t)
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In terms of the basis introduced before, i.e. {x1,...,Xxa,y1,..-,Yya, 11, 412, 422 }, the solution takes the form

x1—= =1, xx—=0, y1 =0, y»— =1, pi1 —4sx3xs, pp — 4syzys,

(25)
K12 = (x3 + x4 — y3 — ya)r — 2(s + t)(xays + x3y3) — 2t (x3ys + xay3) — t/2
with r = —t(s + t). In a numerical setup, for instance, calculating on the kinematic point s = 1, t = —1/5, the 7-cut is
represented by
x1 = =1, x2—=0, y1 =0, y»—= -1, pn —4axs, p2 — 4y, 26)

p12 = (4x3 (—4ys +ya + 1) +4xa (y3 — 4ya + 1) — 4y3 — 4ys +1) /10

We can now determine the coefficients of the polynomial Pz, which in this case has 70 coefficients, by calculating the numerator
N, and the monomials m; of the basis, using 70 random assignments of the undetermined variables, x3, x4, y3, y4, i.e. N and
M;; respectively, and solving the corresponding matrix equation

vl
70
E Mjc =N, i=1,...,70 (27)
j=1

for the unknown coefficients c. The full-rank matrix M is straightforwardly invertible, and the solution checked agrees to the
numerical precision used against the analytic result. We have confirmed that this way we can calculate all the coefficients of
Tab. 2 numerically. The same is true for the case of projecting over the 9 propagators, see Tab. 3.
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FIvE-POINT KINEMATICS/PENTA-BOX TOPOLOGIES

Here we consider the numerator of the penta-box topology constructed by the seven Feynman graphs depicted below, which
contributes to the scattering amplitude of the process gg — ggg.
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FIvE-POINT KINEMATICS/PENTA-BOX TOPOLOGIES

2 2 2 2
Dy =ki, Dy=(ki+p1)° D3=(ki+p12)°, Ds=(k1+k)",
2 2 2 2
Ds = ky, D¢ = (ko —p1o3a)”, D7 =(kx —p123)°, Dg= (ko —p12)°, (28)
2 2 2
Dg = (k1 + p123)“, Dio = (k1 + p123a) °, D11 = (k2 — p1)

The external kinematics is described by 4 independent momenta and five independent invariants, which can be chosen to be

S5 = {s12, 523, 534, S45, S15 }, Where s;; = (p; + p;)~. In order to proceed with the reduction in an analytic setup, the
expression of the numerator needs to be expressed in terms of the 11 invariants V11, defined as the set of variables k; - k;, with
i,j=1,2, and kj - pj with i = 1,2, j=1,...,4. Since the analytic expression of the numerator involves the polarization
vectors of the external gluons, ;,7 =1,...,5, scalar products of the form k; - €; and p; - €; need to be expressed in terms of
the set of variables Sg and Vji. To this end, the following relation is used

1
9~ q; =Gy " di - Pk g Py (29)

where g; stands for any momentum or polarization vector and G denotes the Gram matrix, G = p; - pj,i,j =1, .4
expressed in terms of the Sg variables. Barring that the analytic expression for the inverse Gram matrix and the numerator are
complicated expressions, it is convenient to work in a numerical setup, usmg exact arithmetic. The numerical values for the

variables Ss, are chosen as {512 — 1,533 — %,545 — %, S15 — — 7,53 — 7§} The polarization vectors are defined by

1 1

m"—(mﬂ)’mu—(m) e, (pi) = _m”+(Pi+1)’Y;LU+(Pi) (30)

el (pi) =

fori=1,...,5, where in the above formula the following the ps — p; identification is assumed. With the above
identifications, the numerator consists of monomials composed of the Vi variables, with exact numerical coefficients.
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The maximal cut is given by

s
ki-ki =0, ki-ky—0, ki-pp—0, kl-pz»f%, ko - ko = 0,
(31)
k2‘P2—>SIf2—k2'P1 k2'P3—>54f5—51f2 ’<2'l74—>—si5
2 ’ 2 2’ 2

The Pg polynomial consists of 50 terms, composed of monomials in the ISP variables {ky - p3, k1 - pa, ko - p1}. By following
the usual subtraction procedure the data of this solution are given in Tab. 4.

Level Number of cuts Number of coefficients Scaling
8 1 50 4,55
7 8 705 4,45
6 28 2550 4,44
5 56 3508 3,33
4 70 1902 2,2,2
3 56 348 1,11
2 28 12 0,0,0

TABLE: Penta-box linear fit information beginning with 8-cut.
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Seeking now to solve Eq. (??) the maximal cut is given by

S12 S12 S45
ki ki —0, ki-ky—0, ki-p1—0, kl'PZ"*Tv k1'P3H7*?7
s45 512
k1‘P4—>7, ky - ky =0, ky-pp =0, kz'Pz—>77 (32)
lpy s S _S2 s
2 3 5 > s 2 4 >
and as before, the cut data are shown in Tab. 5.
Level Number of cuts Number of coefficients Scaling
11 1 1 0,0,0
10 11 47 3,4,4
9 55 502 3,44
8 165 2313 3,33
7 330 3715 2,2,2
6 462 2255 1,11
5 462 425 0,0,0

TABLE: Penta-box linear fit information beginning with 11-cut.
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SI1X-POINT KINEMATICS/SIX-GLUON TOPOLOGY

In this subsection, we apply our method to the case of the six-gluon two-loop numerator topology. This graph is part of the
g8 — gggg scattering amplitude.

We define the propagators of the family in which this topology belongs, as

2 2 2
Dy = ki, D= (ki +p1)°, D3=(ki+p12)°,

Dy = (ki + p123)?, Ds = (ki + ko) ?,
Dg = k3,

2 2 2
D7 = (k2 — p123a5) °, Dg = (ko — p1234) ", Do = (k2 — p123)~,

2 2 2 2
Dig = (ki + p123a) ©, D11 = (ki + p123as) ;D12 = (ko — p12)°, D1z = (ko — p1)
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SI1X-POINT KINEMATICS/SIX-GLUON TOPOLOGY

Since out of the six external momenta only four are independent in d = 4 dimensions, not all 13 propagators in Eq. (54) are
independent. In general, for any n-point amplitude, with n > 5, only 11 propagators are independent. We have chosen the
following subset, {Ds, . .., Dig, D13} having expressed ps in terms of py, . .., ps through Eq. (29). As in the case of the
penta-box, section ??, the analytic expressions are hardly manageable, and it is convenient to work in a numerical setup, using
exact arithmetic. The numerical values of the invariants are chosen as !

5 1 31
{512 — 4,93 = —1,534 = 1,55 = 7756 7 50516 = —1,5103 = 2,534 — —1, 5345 — E} )

with sj = (pi +pj + Pk)z- For the polarization vectors we follow Eq. (30), with the identification of p; — p;.
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The 9-cut
Di=...=Dg=0 (33)

is given, in the numerical point chosen, by

ki-ki —0, ki-ky—0, ki-pt >0, ki-pp— =2, k-p3—=>1 k-k —0,

. Skeopr 2Ge-p 3, 3 (34)
pp = - — —— g = Z Cps = ——
2 - P2 > 3 s 2 P3 3 > s 2 * P4 2
The reduction data are given in Tab. 6.
Level Number of cuts Number of coefficients Scaling

9 1 21 4,46

8 9 355 4,46

7 36 1949 4,45

6 84 4462 4,44

5 126 4540 3,33

4 126 2016 22,2

3 84 334 1,11

2 36 16 0,0,0

TABLE: 6 gluon linear fit information beginning with 9-cut.
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Projecting over the set of 11 propagators, referred above, the 11-cut is given by

ki-ki =0, ki-kx—0, ki-pt =0, ki-pp——2, k- -p3—1,
3 5
k1'P4%Z» ky - kp =0, ky-p1 —0, k2-P2H57

k; 3 k; 3
Sp3— ——, cpy = ——
2" P3 > 2 " P4 2

and the reduction data are summarized in Tab. 7.

Level Number of cuts Number of coefficients Scaling
11 1 1 0,0,0
10 11 41 3,33
9 55 505 3,35

165 2365 3,34
7 330 4780 3,33
6 462 4290 2,2,2
5 462 1592 1,11
4 330 200 0,0,0

TABLE: 6 gluon linear fit information beginning with 11-cut.
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OTHER CONTRIBUTIONS

Penta-triangle Hexa-bubble

Non-planar double box gg — tt gg — ttH
= < <
(| JRE T
¢
2
— Bevilacqua, Giuseppe and Canko, Dhimiter and Papadopoulos, Costas and Spourdalakis, Aris,, hep-ph: 2506.07231
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Mon, October 27

Full CI

f Fey Integral at Two Loops
Contribution | Speaker: Hiale Frellesuig

Frontier of multi-loop multi-leg Feynman integrals
Contribution | Speaker: Yang Znang

Numerical methods for the evaluation of two-loop master integrals for
$pp \to t \bar{t} j$

Contribution | Speaker: Michal Czakon

Two-loop integrand reduction
Contribution | Speaker: Konstantinos Papacogouios

Construction of two-loop amplitudes with HELAC
Contribution | Speaker: Dhimiter Canko

of
Contribution | Speaker: Giuseppe Bevilacqua

level in HELAC

of
Contribution | Speaker: Aris-George-Baldur Spourdalakis

Two-loop all-plus helicity amplitudes for self-dual Higgs boson with
gluons via unitarity cut constraints
Contribution | Speaker: Federco Ripani

Two-loop Feynman integrals for NNLO QCD corrections to ttW.
production
Contribution | Speaker: Matteo Becchett

Integral reduction & differential equations with CALICO
Contribution | Speaker: Gaia Fontana

Two loop RGEs for Effective Field Theories
Contribution | Speaker: Achillefs Lazopoulos
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SUMM & OUTLOOK

Current:
@ Integrand construction @2L — solved and implemented

o Cut equations @2L: determining on-shell loop momenta — solved,
implementation in progress

@ Integrand basis construction and fitting ©@2L — solved,
implementation in progress V. Sotnikov, doi:10.6094/UNIFR/151540

@ d =4 — 2¢ — implementation in progress for 1 loop
Near future:
@ d =4 — 2¢ — to be extended to 2 loops

@ IBP reduction tables and M| numerical evaluation
— D. Chicherin and V. Sotnikov, JHEP 20 (2020), 167

—D. Chicherin, V. Sotnikov and S. Zoia, JHEP 01 (2022), 096

Next-to-near future: automated 2-loop amplitude evaluation
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