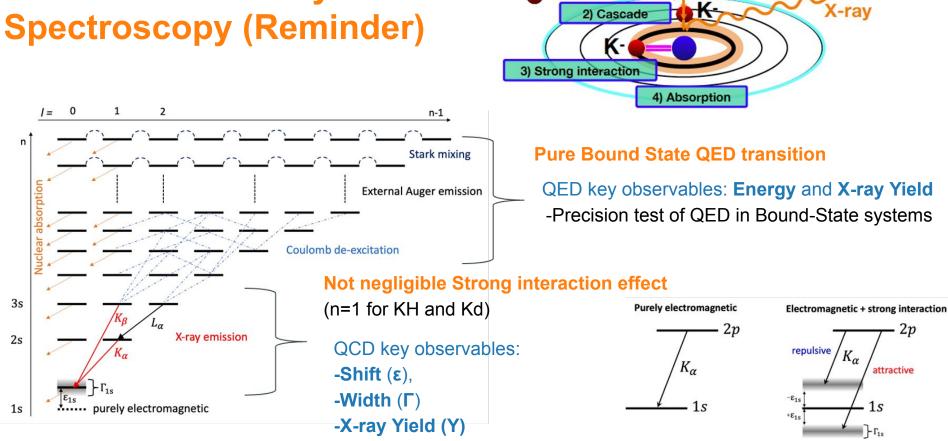



Contents

- SIDDHARTA-2: Scientific Case Reminder
 - Kd Report and Other Results
 - Theoretical Insight KNe, KF
- **EXKALIBUR**: Update Program
- X-ray Detectors Development: SDDs and CdZnTe

SIDDHARTA-2

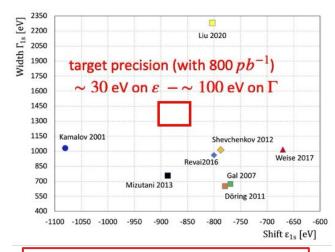
Silicon Drift Detector for Hadronic Atom Research by Timing Applications


LNF-INFN, Frascati, Italy
SMI-ÖAW, Vienna, Austria
Politecnico di Milano, Italy
IFIN –HH, Bucharest, Romania
TUM, Munich, Germany
RIKEN, Japan
Univ. Tokyo, Japan
Victoria Univ., Canada
Univ. Zagreb, Croatia
Helmholtz Inst. Mainz, Germany
Univ. Jagiellonian Krakow, Poland
ELPH, Tohoku University

Kaonic Atoms X-ray

K-

highly-excited state

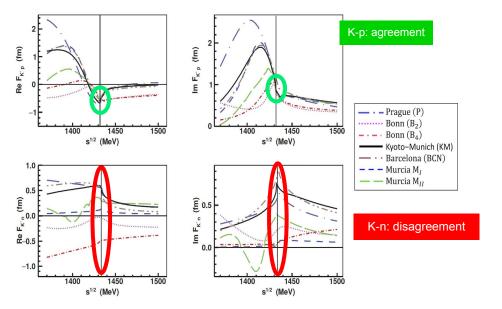

deexcite

1) Initial capture

Auger Electron

The SIDDHARTA-2 Experiment Main Aim (Reminder)

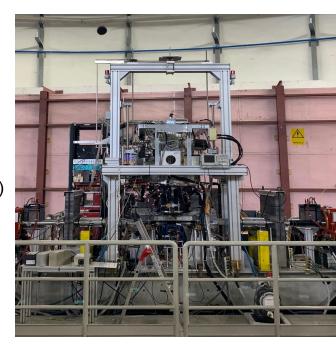
Main scientific goal: First measurement ever of kaonic deuterium X-ray transition to the ground state (1s-level) such as to determine its shift and width induced by the presence of the strong interaction, providing unique data to investigate the QCD in the non-perturbative regime with strangeness.

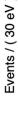


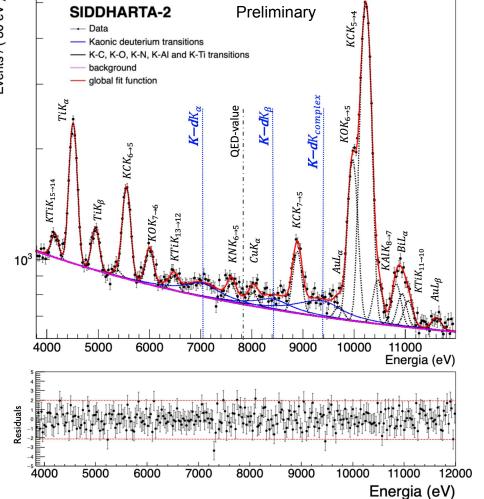
Determine the kaonic deuterium scattering length through the summed up" Deser-Truman formula

$$\varepsilon_{1s} + \frac{i}{2}\Gamma_{1s} = 2\alpha^3 \mu^2 a_{K-d} / \left[1 + 2\alpha \mu (\ln \alpha - 1) a_{K-d}\right]$$

Shevchenko, N. V. Few Body Syst. 63, 22 (2022).

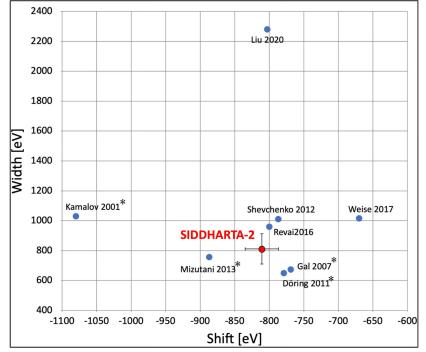

Combined analysis of the kaonic deuterium and kaonic hydrogen measurements to determine theisospin-dependet scattering lengths


Ciepl y, A. et al. AIP Conf. Proc. 2249, 030014 (2020).


Data Taking Summary

- *Kaonic Neon*: initial calibration and optimization of the setup, int. lumi 125 pb⁻¹ (April 2023)
- K-d Run-1: int. luminosity 164 pb⁻¹ (May July 2023)
- Kaonic Helium-4: final calibration of the setup, int. lumi 40 pb⁻¹ (July 2023)
- *Kaonic Neon*: initial calibration of the setup, int. lumi 36 pb⁻¹ (Sept 2023)
- K-d Run-2: int. luminosity 276 pb⁻¹ (October December 2023)
- Kaonic Hydrogen: final calibration of the setup, int. lumi 26 pb⁻¹ (Dec 2023)
- *Kaonic Hydrogen*: initial calibration of the setup, int. lumi 70 pb⁻¹ (Jan 2024)
- K-d Run-3: int. luminosity 375 pb⁻¹ (February April 2024)
- Kaonic Hydrogen: final calibration of the setup, int. lumi 150 pb⁻¹ (April 2024)
- Low density run: int. luminosity 185 pb⁻¹ (May July 2024)
- Post Kd calibration run (July 2024) 20 pb⁻¹ with solid targets (B and F)

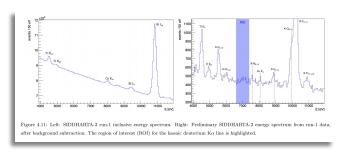
Total 1467 pb⁻¹ of good data (April 2023 - July 2024; about 13 months)
K-d total integrated luminosity good for physics: 1000 pb⁻¹
Other Elements (H,He,B,F,Ne): 467 pb⁻¹



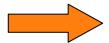
Kaonic Deuterium Results

$$\epsilon_{1s} = -810.9 \pm 24.5 (stat) \pm 2.1 (syst) \text{ eV}$$

$$\Gamma_{1s} = 812 \pm 97 (stat) \pm 33 (syst) \text{ eV}$$


Targeted precision achieved!

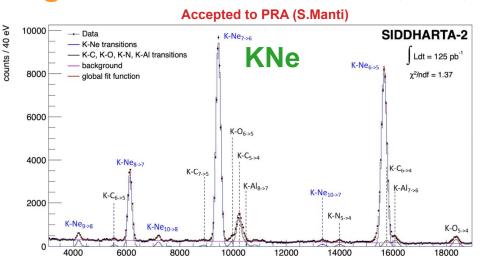
Recommendation from the 69th Scientific Committee


"The Scientific Committee compliments the members of the collaboration on their scientific results, publications, and training and dissemination activities. The SC reiterates its recommendation to aspire to a **high-impact physics journal** for the publication of their final result on the **Kd 1s energy shift and width**, as well as for the **expected yield determinations** and **derived results**."

- Preliminary Kd Spectrum in PPNP article on kaonic atoms (IF17.9)
- Kd 1s Energy Shift and Width to Nature Physics (tbc) (IF18.4)
- $Y_{K_{\alpha}} = (6.01 \pm 0.14) \times 10^{-4}$ with ~ 22.9% Relative Error.
- Several Cascade Models predict different Yields and Density trends.
- Combining the 1.4% and 0.8% LDD Kaonic Deuterium measurements can help discriminate between cascade models.

Extracting K⁻d Scattering Length:

$$\varepsilon_{1s} + \frac{i}{2}\Gamma_{1s} = 2\alpha^3 \mu^2 a_{K-d} / \left[1 + 2\alpha \mu (\ln \alpha - 1)a_{K-d}\right]$$

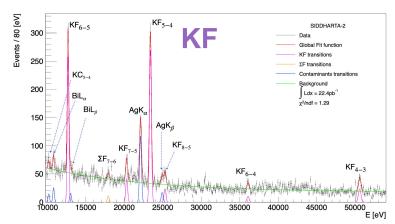


$$ext{Re}(a_{K_D}) = -1.57 \pm 0.07 ext{ (exp.)} \pm 0.01 ext{ (th.) fm}, \ ext{Im}(a_{K_D}) = 1.11 \pm 0.13 ext{ (exp.)} \pm 0.04 ext{ (th.) fm}.$$

Shevchenko, N.V. Light Kaonic Atoms: From "Corrected" to "Summed Up" Deser Formula. Few-Body Syst 63, 22 (2022)

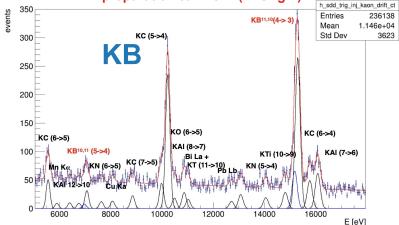
V. Baru, E. Epelbaum, A. Rusetsky, The role of nucleon recoil in low-energy antikaon-deuteron scattering. Eur. Phys. J. A 42, 111 (2009)

Light Kaonic Atoms: KNe, KB, KF


Phys. Lett. B 865 (2025) 139492

Letter

High precision X-ray spectroscopy of kaonic neon *


- F. Sgaramella ^{a, o, *}, D. Sirghi ^{b,a,c,**}, K. Toho ^d, F. Clozza ^a, L. Abbene ^e, C. Amsler ^f, F. Artibani ^{a,g},
- M. Bazzi ^a, G. Borghi ^{h,i}, D. Bosnar ^j, M. Bragadireanu ^c, A. Buttacavoli ^e, M. Cargnelli ^f,
- M. Carminati h,i, A. Clozza a, R. Del Grande k,a, L. De Paolis a, K. Dulski a,l,m, L. Fabbietti k,
- C. Fiorini h.i., I. Friščić^j, C. Guaraldo a.l., M. Iliescu a. M. Iwasaki a. A. Khreptak l.m. S. Manti a.
- J. Marton f, P. Moskal l, m, F. Napolitano a, S. Niedźwiecki l, m, H. Ohnishi d, K. Piscicchia b, a,
- F. Principato^e, A. Scordo^a, M. Silarski¹, F. Sirghi^{a,c}, M. Skurzok^{1,m}, A. Spallone^a,
- L.G. Toscano ^{h,i}, M. Tüchler ^f, O. Vazquez Doce ^a, E. Widmann ^f, J. Zmeskal ^{f,1}, C. Curceanu ^a

In preparation to PRL (F. Clozza)

E [eV]

New Theoretical Developments - Ab initio Calculations

Recommendation from 69th Scientific Committee

"The SC welcomes the enrichment of the scientific program of the first EXKALIBUR module with BSQED and strong electric field dynamics studies. It is therefore recommended that specific goals or targets be identified for these new objectives."

Ab Initio Input

- Ab Initio Approach: based only on Physical Laws and Fundamental Constants.
- Supports Normal, Exotic, or Mixed Atomic Systems.
- Supported Exotic Particles:
 - K-: Kaons
 - $m{\mu}$: Muons
- π^- : Pions
- Σ^{-} : Sigmas
- $\bar{\mathbf{p}}^{-}$: Antiprotons
- X-: Test Particles

MCDF Framework

Basis Wavefunctions:

• Dirac Equation (spin-1/2 particles)

$$\left[c\boldsymbol{\alpha}\cdot\mathbf{p} + \beta mc^2 + V(\mathbf{r})\right]\psi_i(\mathbf{r}) = \varepsilon_i\psi_i(\mathbf{r})$$

Klein-Gordon Equation (spin-0 particles)

$$\left[-\hbar^2 c^2 \nabla^2 + m^2 c^4\right] \phi(\mathbf{r}) = \left[E - V(\mathbf{r})\right]^2 \phi(\mathbf{r})$$

Multi-Configuration Dirac-Fock:

$$\Psi = \sum_{v=1}^{NCF} W_v \phi^v (1, 2, ..., N; J, J_z)$$

$${\cal E}_{\rm tot} = \sum_{\nu\mu} W_{\nu} W_{\mu} \langle \phi^{\nu} | H | \phi^{\mu} \rangle / \sum_{\nu} W_{\nu}^2$$

Total Energies Contributions:

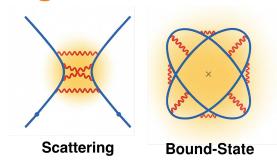
- · QED (All-Orders)
- Breit Interaction
- · Recoil Effect
- Nuclear Finite Size
- Screening Effect

Output Quantities

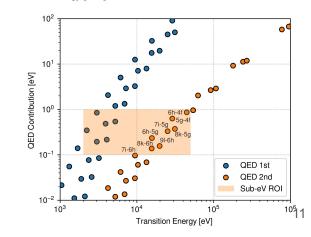
Energy Levels & Transitions

Radiative Transition Probabilities

Auger Decay Rates



QED Self-Energy & Vacuum Polarization

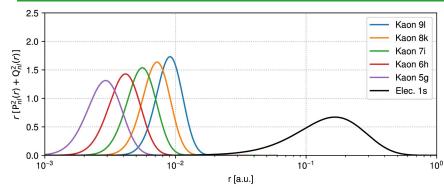

Parameters for Atomic Cascade

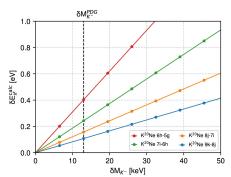
Testing Bound State QED with Kaonic Atoms?

- $\chi^2 / ndf = 1.30$ 10^{4} KNe87 $\int Ldt = 150 \text{ pb}^{-1}$ KNe87 KNe98 Counts / 40 eV Background Total Fit Data KNe98 KNe108 KNe119 KC65 KNe129 KN65 KTi1211 KC75 10² 3.5 5.5 6.5 8.5 9.5 7.5 10.5 11.5 Energy [keV]
- **Dirac-Fock vs Data** in KNe show **Negligible** Nuclear Effects (FNS, Recoil, QCD Shifts).
- **BSQED Contributions** exceed experimental uncertainties (~8σ for the 7i-6h)
- For KNe many transitions 2nd Order QED contributions lie in the sub-eV ROI, enabling Precision BSQED Tests.

Transition	$E_{if}^{(\mathrm{exp.})}$	$\delta E_{if}^{({ m stat.})}$	$\delta E_{if}^{({ m sys.})}$	$E_{if}^{({ m calc.})}$	$E_{if}^{ m (QED)}$	$E_{if}^{({ m QED1})}$	$E_{if}^{({ m QED2})}$
9l-8k	4206.97	3.43	2.00	4201.45	2.09	2.07	0.02
8k-7i	6130.57	0.65	1.50	6130.31	5.09	5.05	0.04
7i-6h	9450.23	0.37	1.50	9450.28	12.66	12.56	0.10
6h-5g ^a	15673.30	0.52	9.00	15685.39	32.75	32.51	0.24

KNe76

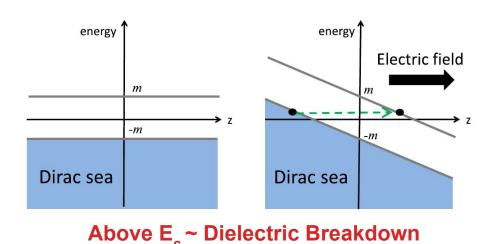

KNe76

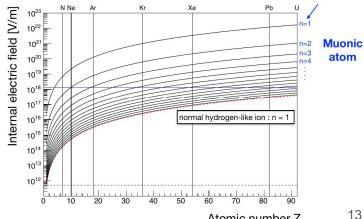

Testing Bound State QED with Kaonic Atoms? YES!

- Evaluation of Electronic Screening effects and Uncertainty on the Kaon Mass (~13 keV) on the observed lines in comparison to the size of QED contributions
- Both Effects are Small (< 0.5 eV) relative to the QED contributions and, moreover, electronic screening is negligible for the considered transitions.

Transition	$E_{if}^{(\mathrm{exp.})}$	$\delta E_{if}^{({ m stat.})}$	$\delta E_{if}^{(\mathrm{sys.})}$	$E_{if}^{({ m calc.})}$		$E_{if}^{ m (QED1)}$	$E_{if}^{({ m QED2})}$	$\Delta E_{if}^{ m (isot.)}$	$\Delta E_{if}^{(m screen.)}$	$oldsymbol{\Delta E_{if}^{(ext{PDG})}}$
9l-8k	4206.97	3.43	2.00	4201.45	2.09	2.07	0.02	9.90	-0.38	0.11
8k-7i	6130.57	0.65	1.50	6130.31	5.09	5.05	0.04	14.45	-0.27	0.16
7i-6h	9450.23	0.37	1.50	9450.28	12.66	12.56	0.10	22.28	-0.18	0.24
6h-5g ^a	15673.30	0.52	9.00	15685.39	32.75	32.51	0.24	37.01	-0.11	0.40

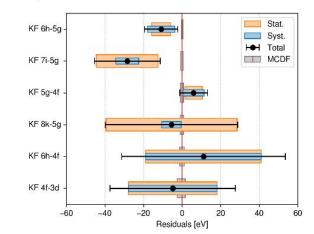
Kaon WFs are well inside the 1s electron orbit -> **Neon Fully Ionized!**

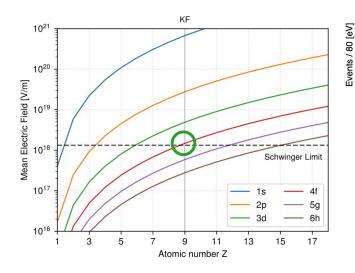

Kaonic Atoms for Strong Fields QED: Schwinger Limit

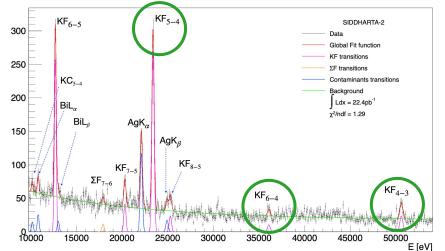

- Interest in Studying QED in Strong Fields with Exotic Atoms (e.g., Antiprotons with PAX@CERN, Muons at J-PARC)
- Search for Transitions where the Electric Field experienced by the Exotic Particle Exceeds the Schwinger Limit E_C
- Limit defined where the **Spontaneous** e⁺- e⁻ Pair Production occurs below threshold

$$E_c = rac{m_e^2 c^3}{q_e \hbar} pprox 1.32 imes 10^{18} V/m_e$$

$$P\sim \exp\Big(-rac{E_c}{E}\pi\Big)$$

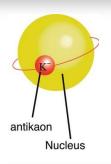

Hattori, Koichi, et al. *Progress in Particle* and Nuclear Physics 133 (2023): 104068.





Kaonic Atoms for Strong Fields QED: Schwinger Limit for KF!

- For KF, the 5g-4f, 6h-4f and 4f→3d the Average Orbital Electric Field approaches the Schwinger limit (a First in Exotic Atoms!)
- Significant BSQED contribution due to the Nonlinear
 Dependence of VP Diagrams on the Electric Field Strength
 (~9σ for 5g-4f with only 22.4 pb⁻¹ ~ 2 days)


A Paper in Preparation to PRL!

Contents

- SIDDHARTA-2: Scientific Case Reminder
 - Kd Report and Other Results
 - Theoretical Insight KNe, KF
- **EXKALIBUR**: Update Program
- X-ray Detectors Development: SDDs and CdZnTe

1.1 - High Precision Kaonic Neon Measurement
To extract the negatively charged kaon mass with a precision < 10 keV

- 1.2 Light kaonic atoms (LHKA)
- solid target Li, Be, B
- integration of 1mm SDD

EXKALIBUR

C. Curceanu et al., Front.in Phys. 11 (2023) 1240250

EXtensive

Kaonic

Atoms research: from

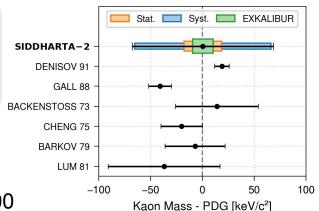
L/thium and

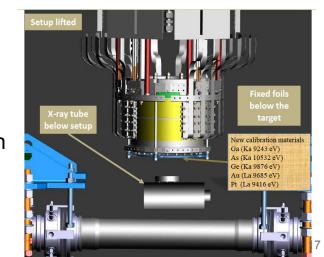
Beryllium to

URanium

Intermediate kaonic atoms (IMKA)

In parallel we plan dedicated runs for kaonic atoms (*O, Al, S*) with CdZnTe detectors
- 200 -300 pb⁻¹ of integrated luminosity/target


- Feasibility with minimal modifications/addings of the already existent SIDDHARTA-2
 - ➤ New calibration system (0.2 eV accuracy)
 - New 1mm thick SDDs
 - New and improved CZT setup
- **Impact**: i.e. the **maximal scientific outcome**

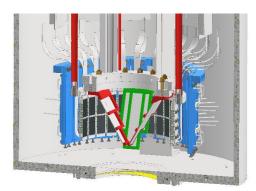

EXKALIBUR 1.1 - High Precision Kaonic Neon Measurement

Recommendation from 69th Scientific Committee

"The SC welcomes the enrichment of the scientific program of the first EXKALIBUR module with BSQED and strong electric field dynamics studies. It is therefore recommended that specific goals or targets be identified for these new objectives."

- A KNe Dedicated Optimized Run can reach < 10 keV via:
 - **×2** improvement by **Doubling Luminosity** (150 pb⁻¹ \rightarrow 300 pb⁻¹)
 - ×2 improvement by Optimized Neon Gas Target Design
 - **■** Efficiency~Lower Statistical
 - Calibration~Systematic→0.2 eV
- Uncertainty ~ 0.2 eV will match 2nd order BSQED Contribution useful for recent All-Order Wichmann and Kroll Contribution studies (<u>Paul Indelicato et al. arXiv:2509.08763</u>)

EXKALIBUR 1.2 - Light Kaonic Atoms (LHKA) - Solid Targets

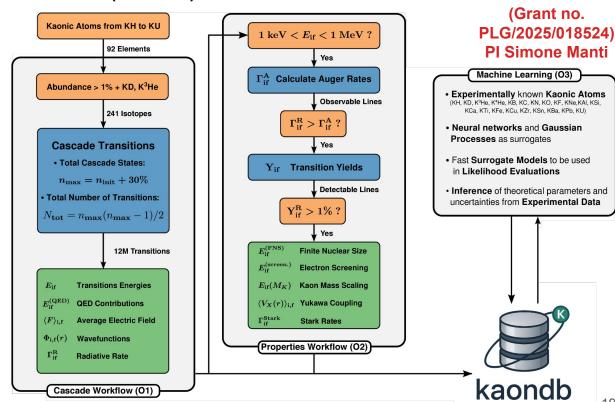

Recommendation from the 69th Scientific Committee

"The SC welcomes the enrichment of the scientific program of the first EXKALIBUR module with BSQED and strong electric field dynamics studies. It is therefore recommended that specific goals or targets be identified for these new objectives."

- Kaonic Boron test measurement successfully achieved!
- Construction of new support system for Solid Targets (Li,Be,B)
 conical shape to maximise the solid angle MC simulations ongoing
- 1mm thick SDDs with Enhanced Efficiency above 15 keV
- QED in Strong Fields (E>E_c): Kaonic Fluorine 5g-4f line Precision to ~
 0.5 eV with ~200 pb⁻¹ using the same Solid-Target Setup
- In parallel CZT measurement of (O, AI, S)

Lithium-6		Lit	hium-7	Beryllium-9		
Transition	Energy (keV)	Transition	Energy (keV)	Transition	Energy (keV)	
${\bf 3} \to {\bf 2}$	15.085	$3 \rightarrow 2$	15.261	$3 \rightarrow 2$	27.560	
$4 \rightarrow 2$	20.365	$4 \rightarrow 2$	20.603	$4 \to 3$	9.646	
$5 \rightarrow 2$	22.809	$5 \rightarrow 2$	23.075	$5 \to 3$	14.111	
$4 \rightarrow 3$	5.280	$4 \rightarrow 3$	5.341	$5 \rightarrow 4$	4.465	
5 o 3	7.724	5 o 3	7.814	6 o 4	6.890	
$5 \rightarrow 4$	2.444	5 o 4	2.472	6 o 5	2.425	
$6 \rightarrow 4$	3.771	$6 \rightarrow 4$	3.815			

Solid targets system



Realising a (Strange) Periodic Table of Kaonic Atoms

Awarded 500,000 Core-Hours on the Helios Supercomputer (PLGrid, Krakow ~36 PFlops) to build a Kaonic Atoms Database (KaonDB)

PL

- Cascade Workflow O1:
 Calculating Cascades
 (KH–KU, ~12M transitions)
- Properties Workflow O2:
 Screening for Observable
 and Detectable Lines
 (BSQED, QCD, BSM)
- Machine Learning O3:
 Inferring Parameters &
 Uncertainties from Exp. with
 Surrogate Models
- Deliver an Online-Accessible Database (FAIR principles)

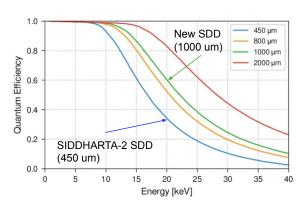
Contents

- SIDDHARTA-2: Scientific Case Reminder
 - Kd Report and Other Results
 - Theoretical Insight KNe, KF
- **EXKALIBUR**: Update Program
- X-ray Detectors Development: SDDs and CdZnTe

Recommendation from the 69th Scientific Committee

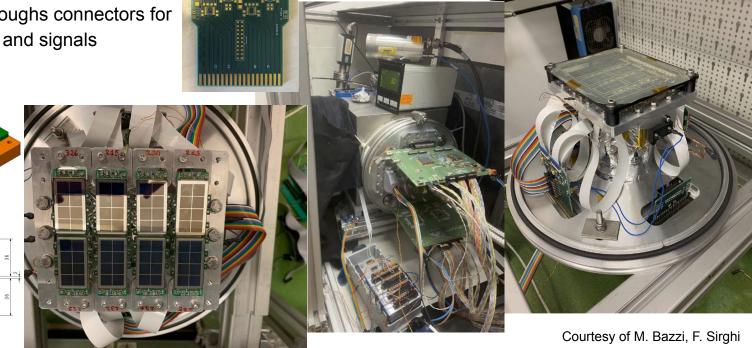
"The group is encouraged to continue their good work **developing and testing X-ray detectors for EXKALIBUR**, yet to **explore also how these developments can be used in other experimental setups** in particular if DAΦNE will not further operate in collider mode."

New 1mm thick Silicon Drift Detectors



- Innovative monolith large area (~5 cm²) 1 mm thick SDD arrays:
 - New multilayer PCB and bias lines better signal integrity
 - higher efficiency compared to SIDDHARTA-2 SDDs
- The first 12 arrays of SDD 1mm arrived in May 2025 to be characterized
 very successful test done in laboratory at LNF (technical article in preparation)
- SDD array

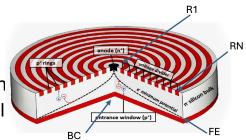
- "Mass" production of the SDD modules (~80 arrays) on going:
 - The SDD assembly will be done at FBK
 - Cryogenic tests and spectroscopic optimization, and bus assembly at LNF

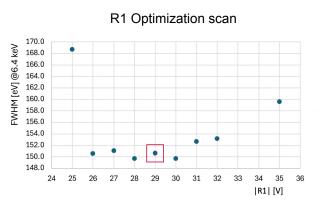

New 1mm thick Silicon Drift Detectors

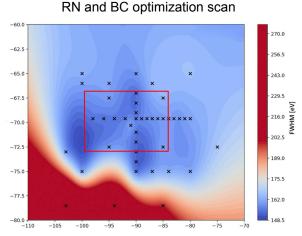
First BUS of the new SDD 1mm (64 SDDs) successfully installed and characterized in laboratory:

New support holders

New Front-end and buffer board

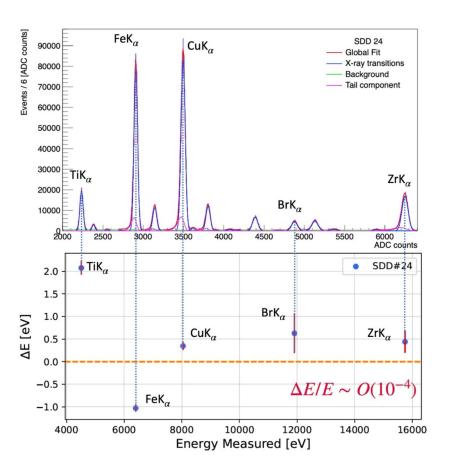

New feedthroughs connectors for high voltage and signals




Test and optimization of the energy response

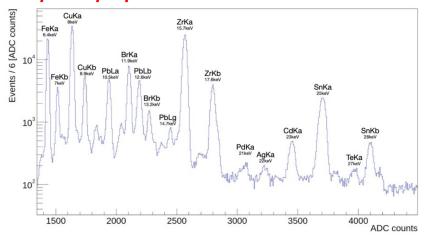
Fine-tuning 4 bias voltages for optimal spectroscopic response:

- BC (Back Contact): Depletes silicon bulk → improves charge transport
- R1 & RN: Bias concentric rings → create gutter like potential toward an
- FE (Focusing Electrode): Enhances charge collection → better signal integrity and energy resolution

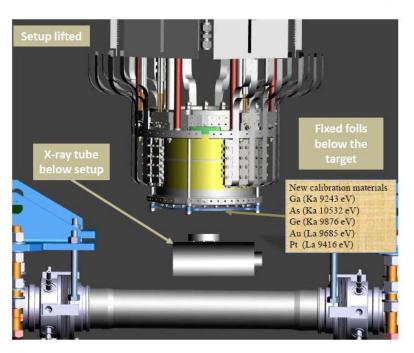


Optimized Energy Response

- Ideal working point identified → minimum energy resolution
- Typical energy resolution:


 450 eV FWHM 86 4 keV
 - ~ 150 eV FWHM@6.4 keV
- Stable performance (variation within a few eV)

Test and optimization of the energy response


- Energy response characterization completed up to 16 keV, showing excellent linearity (< 2 eV deviation)
- Extension to 30 keV successfully achieved data analysis in progress
- Next step: extend the range and evaluate performance up to 50 keV

Paper in preparation

New calibration system for SDD

- Upgraded calibration system for SDD calibration to achieve a 0.2 eV accuracy (to be applied to KNe existent measurements)
- Currently under construction to be installed in DAFNE by end 2025
- Measurement and test (DAFNE off) to begin in 2026

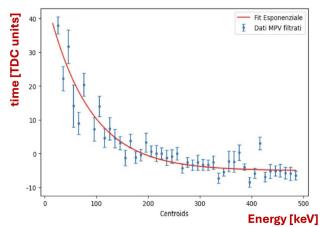
New Calibration System – Activities

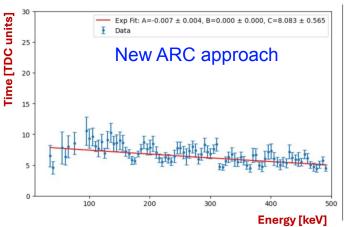
Completed:

- Setup modification completed
- Lifted the setup for easier access
- Entrance window modified
- Calibration materials ordered

To be done:

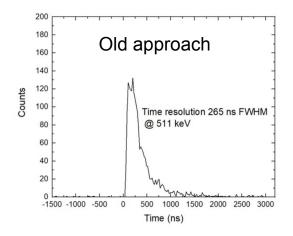
- Installation of calibration materials
- Alignment and verification of the setup

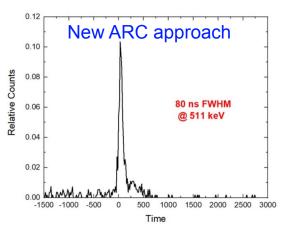



CdZnTe detectors for energy and time spectroscopy

Development of new pulse processing techniques to improve the <u>timing resolution</u> in CZT hemispherical detectors. Exciting results from simulation and measurements (Completed).

- Events interacting at different depths → different amplitudes (energy) and different shapes (rise time)
- By performing the classical leading-edge detection the arrival time strongly depends by the energy
- Solution: Amplitude and Rise Time compensated (ARC) timing based on a digital constant fraction discrimination → timing is independent by the energy



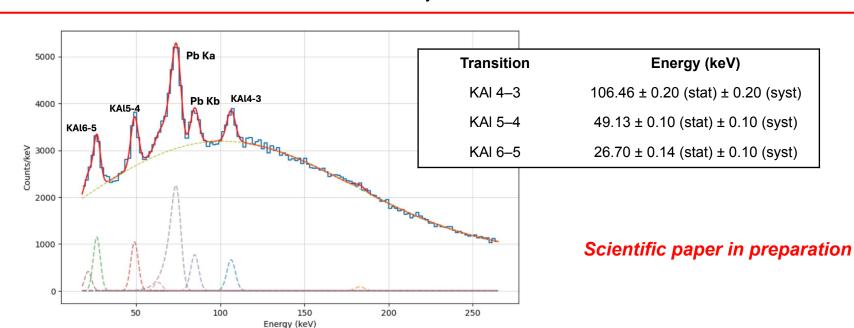


CdZnTe detectors for energy and time spectroscopy

- New pulse processing technique for improved time resolution tested with a ²²Na (511 keV) source
- Time resolution (FWHM) improved by more than a factor 3

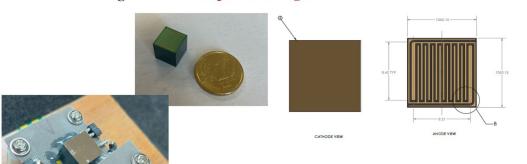
Timing performance of CdZnTe detectors studied for the first time

→ crucial for background reduction in accelerator environments


(Technical article submitted to Meas. Scie. and Tech. (IOP) (arXiv:2511.0267))

Kaonic Aluminium measurementwith CdZnTe detectors

A 25-30% improvement in the precision of K–AI transition measurements was achieved with the new ARC analysis



CdZnTe detectors for energy and time spectroscopy

Investigation (simulation and measurements) on new electrode design in CZT-based detectors for <u>energy and timing resolution</u> improvements (Ongoing).

Electrode Configurations: Coplanar Design

• Detectors were wire bonded on a custom board to test with new preamplifiers

Prototype ready to be tested at the BTF

- Energy response and energy resolution characterization
- Timing performance measurement
- Evaluate the spectroscopic response in a high-background environment a key step toward application in particle accelerator environment

Possible applications beyond EXKALIBUR

Quantum Foundation

VIP-3 (LNGS): Test of the Pauli Exclusion Principle and physics beyond Standard Model

Fundamental Interactions

- **J-PARC-E57**: Kaonic atoms → study low-energy QCD
- **CERN-PAX**: Antiprotonic atoms → test bound-state QED in strong fields
- PSI: Muonic/pionic atoms

Astrophysics

FIREBALL (LNF-BTF) → e⁻e⁺ – plasma interaction

Non-destructive high-resolution material characterization e.g. batteries - RCLIB

Future Possibility

Beam diagnostic at X-ray facilities: EuPRAXIA-EuAPS

Publication since last SciCom - May 2025

- S. Manti, et al., "Precision Test of Bound-State QED at Intermediate-Z with Kaonic Neon", accepted by Phys. Rev. A
- C. Curceanu, et al., "Light kaonic atoms as probes of fundamental interactions in strange systems", accepted by Progress in Particle and Nuclear Physics (PPNP)
- F. Artibani, et al., "Time-based Selection of Kaonic Atom X-ray Events with Quasi-Hemispherical CZT Detectors at the DAΦNE collider" submitted to Meas. Scie. and Tech. (IOP)
- F. Clozza, et al., "Characterization of the X-ray spectroscopy SIDDHARTA-2 Silicon Drift Detectors' energy response up to 50 keV" submitted to Meas. Scie. and Tech. (IOP)
- F. Artibani, et al., "Low-Energy Kaon-Nuclei Interaction studies at the DAΦNE Collider: a Strangeness Odyssey", PoS(QCHSC24) 266
- Scientific papers in preparation:
 Kaonic Deuterium, Kaonic Fluorine, Kaonic Boron, Kaonic Aluminium

Workshops and Conferences

List of conferences and workshop we organized at LNF:

High Precision X-ray Measurement 80 participants and more than 50 talks

we presented the new 1 mm-thick SDDs, along with recent advances in CZT timing performance and application at particle colliders

https://agenda.infn.it/event/43727/

Fundamental Physics with Exotic Atoms

Fundamental Physics with Exotic Atoms 46 participants and 24 talks

we presented the results of the kaonic deuterium measurement, along with recent findings on kaonic neon, boron, and fluorine for BSQED studies

https://agenda.infn.it/event/46674/

Good news about SIDDHARTA folks

- Riccardo Gasbarrini bachelor degree student at Univ. Tor Vergata completed his stage within SIDDHARTA-2
- Michaela Lizardou erasmus student from Greece starting in January
- Francesco Clozza Ph.D. student 2nd best talk at HPXM 2025
- Simone Manti Awarded 500,000 Core-Hours on the Helios Supercomputer (PLGrid, Krakow ~36 PFlops) (Grant no. PLG/2025/018524)
- Francesco Sgaramella, Francesco Artibani, Francesco Clozza PROM Program Grant (FERS.01.05-IP.08-0218/723): Short-term academic exchange on radiation detectors at Krakow University
 - Alessandro Scordo: Chair of Cost Action ENRICH
 European Network for research and innovation in Radiation-based applications to address Increasing societal CHallenges
- Leonardo Abbene: PI of DRESS HADRON 2030 proposal:
 Digital high REsolutionposition-sensitive room temperature Semiconductor detectors for high precision radiation Spectroscopy in hadron physics and related areas
 (WP5 TA5: Next-generation Instrumentation and target technologies)
- Raffaele Del Grande ERC starting Grant: "Hunting three-body forces (HUNTING-3BFs)"

Summary

SIDDHARTA-2 data taking

Kd:shift and width of the 1s level determined Yield evaluation and scattering length determination ongoing Other kaonic atoms: K-Ne, K-F, K-B, K-Al, K-Cu

$$\epsilon_{1s} = -810.9 \pm 24.5 (stat) \pm 2.1 (syst) \text{ eV}$$

$$\Gamma_{1s} = 812 \pm 97 (stat) \pm 33 (syst) \text{ eV}$$

- New Opportunities in Kaonic Atom Spectroscopy
 High-precision tests of Bound-State QED (BSQED) Physics beyond the Standard Model
- EXKALIBUR Scientific Modular Program

Kaon-multi-nucleon interaction (low-energy QCD):

kaonic boron, beryllium, lithium with 1 mm SDD kaonic Oxygen, Sulfur with CdZnTe

High-precision BSQED & extreme-field physics:

kaonic neon, fluorine (sub-eV precision)

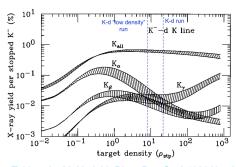
Kaon mass measurement:

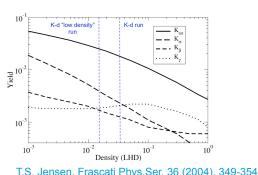
via kaonic neon transitions

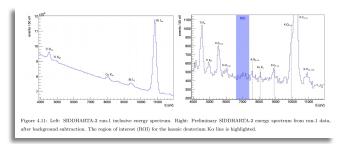
→ Ready to start as soon as possible

- Technological Developments Application Beyond EXKALIBUR
 First 1 mm-thick SDD bus successfully tested: EXKALIBUR, VIP3, and FIREBALL
 CdZnTe detectors: time response characterization and new prototype to be tested at BTF

Special thanks to the accelerator, research and technical divisions, to the DADNE staff, in particular to Catia Milardi, the LNF Director, to the Gruppo 3-INFN and to all those who made this possible!



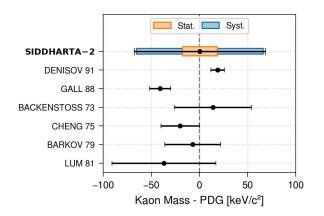

SPARE

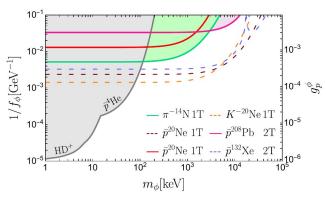

Recommendation the from 69th Scientific Committee


"The Scientific Committee compliments the members of the collaboration on their scientific results, publications, and training and dissemination activities. The SC reiterates its recommendation to aspire to a high-impact physics journal for the publication of their final result on the Kd 1s energy shift and width, as well as for the expected yield determinations and derived results."

- Preliminary Kd Spectrum in PPNP article on kaonic atoms (IF17.9)
- Kd 1s Energy Shift and Width to Nature Physics (tbc) (IF18.4)
- $Y_{K_{\alpha}} = (6.01 \pm 0.14) \times 10^{-4}$ with ~ 22.9% Relative Error.
- Several Cascade Models predict different Yields and Density trends.
- Combining the 1.4% and 0.8% LDD Kaonic Deuterium measurements can help discriminate between cascade models.

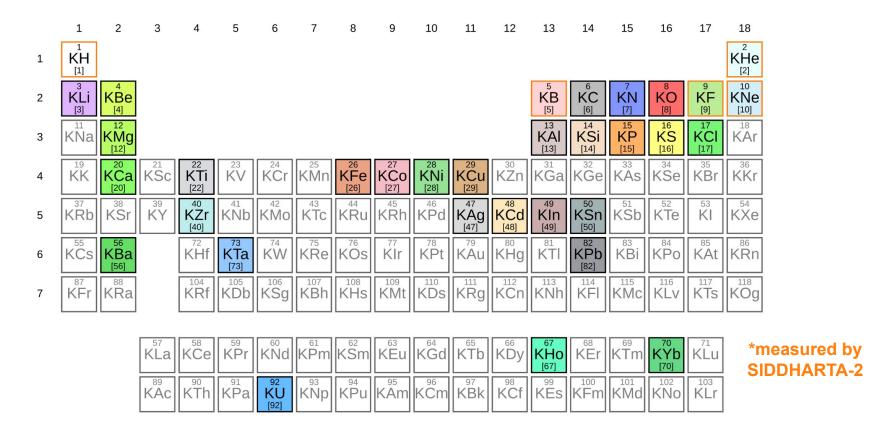
M Raeisi, S. Z. Kalantari, Phys.Rev.A 79, 012510 (2009)


T. Koike, T. Harada, Y. Akaishi, Phys.Rev.C 53 (1996), 79-87


Fundamental Physics with KNe: Kaon Mass & BSM Physics

Transitions with Sub-eV Statistical Precision (~30 ppm)
already provide a Statistical Uncertainty of ~18 keV on the
Kaon Mass combining the 7i-6h + 8k-7i

Transition	$m{M_{K^{ ext{-}}}} [ext{MeV}]$	$\delta M_{K^{ ext{-}}}^{ ext{stat.}} \ [ext{keV}]$	$oldsymbol{\delta M^{ ext{syst.}}_{K^{ ext{-}}}}{ ext{[keV]}}$
7i-6h	493.674	19	78
8k-7i	493.699	52	121
7i-6h + 8k-7i	493.677	(18)	66


 Transition Energies Residuals useful for Exclusion Limits Plots for hypothetical particles with Yukawa-Type Couplings

Exotic atoms constrain uds-scalar [Phys. Rev. Lett. **135**, 131803]

High-Throughput Search of Kaonic Atom Transitions

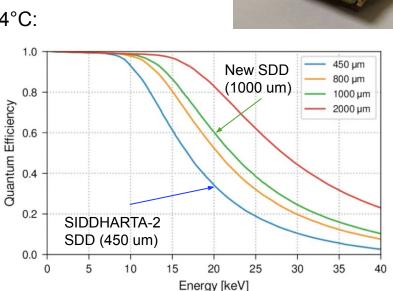
New 1mm thick Silicon Drift Detectors

• Pixel dimensions: 7.9 mm X 7.9 mm

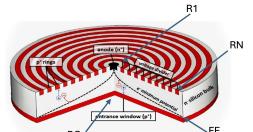
N. pixels per array: 2 X 4

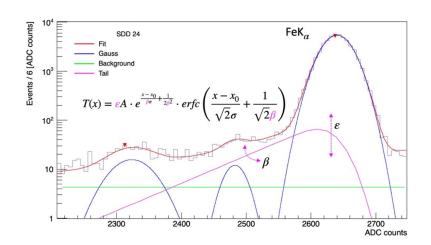
 1mm thick silicon bulk will allow for a better efficiency at high energy

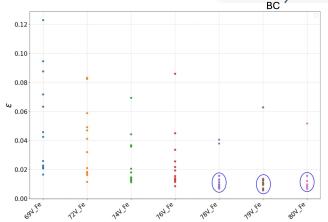
1-mm-thick SDDs: ~ **0.5-2 nA/cm2**


Good production yield: 93 arrays

 New multilayer PCB and bias lines introduced to reduce noise and signal integrity



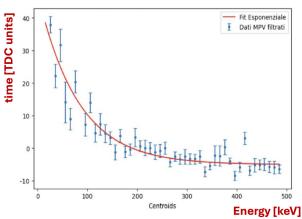


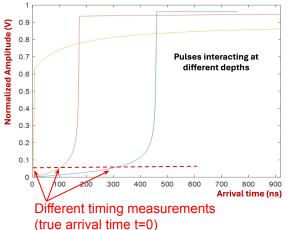


Test and optimization of the energy response

 FE (Focusing Electrode) bias voltage tuning to enhances the signal integrity reducing the exponential tail component of the response function (due to incomplete charge collection and e-h recombination)

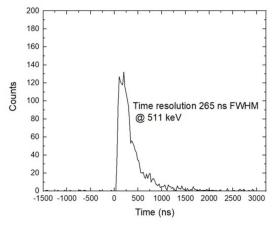
Smaller tail contribution and more uniform energy response of the SDDs at higher FE (Focusing Electrode) bias voltages

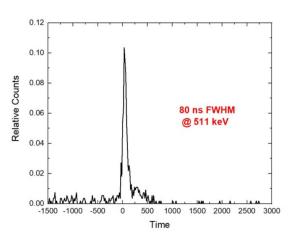



CdZnTe detectors for energy and time spectroscopy

Development of new pulse processing techniques to improve the <u>timing resolution</u> in CZT hemispherical detectors. Exciting results from simulation and measurements (Completed).

- Events interacting at different depths → different amplitudes (energy) and different shapes (rise time)
- By performing the classical leading-edge detection the arrival time strongly depends by the amplitude
- Solution: Amplitude and Rise Time compensated (ARC) timing based on a digital constant fraction discrimination → timing is independent by the amplitude

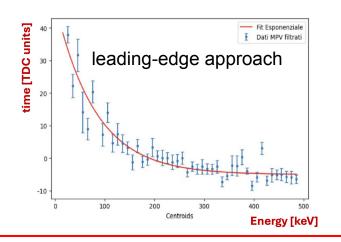


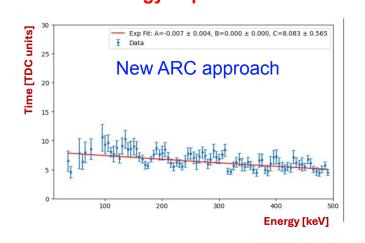

CdZnTe detectors for energy and time spectroscopy

Development of new pulse processing techniques to improve the <u>timing resolution</u> in CZT hemispherical detectors. Exciting results from simulation and measurements (Completed).

- New pulse processing technique for improved time resolution tested with a ²²Na (511 keV) source
- Time resolution (FWHM) improved by more than a factor 3

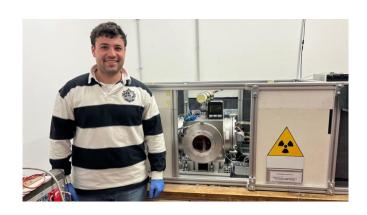
Old approach


New ARC approach



CdZnTe detectors for energy and time spectroscopy

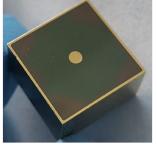
New ARC approach applied to data acquired in DAFNE → Energy dependence removed



- ➤ Timing performance of CdZnTe detectors studied for the first time → crucial for background reduction in accelerator environments
 - (Technical article submitted to Meas. Scie. and Technology (IOP) (arXiv:2511.0267))
- ➤ A 25-30% improvement in the precision of K–AI transition measurements was achieved with the new ARC analysis

Good news about SIDDHARTA folks

- Riccardo Gasbarrini bachelor degree student at Univ. Tor Vergata completed his stage within SIDDHARTA-2
- Michaela Lizardou summer student from Greece starting in January
- Francesco Clozza Ph.D. student 2nd best talk at HPXM 2025
- Simone Manti Awarded 500,000 Core-Hours on the Helios Supercomputer (PLGrid, Krakow ~36 PFlops) (Grant no. PLG/2025/018524)
- Francesco Sgaramella, Francesco Artibani, Francesco Clozza PROM Program Grant (FERS.01.05-IP.08-0218/723): Short-term academic exchange to perform research on detector development at Jagiellonian University (J-PET Group), Krakow



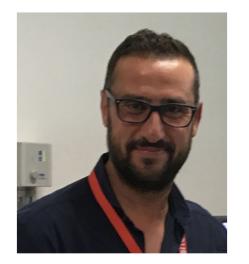
Good news about SIDDHARTA folks

- Alessandro Scordo: Chair of Cost Action ENRICH
 European Network for research and innovation in Radiation-based applications to address Increasing societal CHallenges
- Leonardo Abbene: Pl of DRESS HADRON 2030 proposal:
 Digital high REsolutionposition-sensitive room temperature Semiconductor detectors for high precision radiation Spectroscopy in hadron physics and related areas
 (WP5 TA5: Next-generation Instrumentation and target technologies)

ENRICH

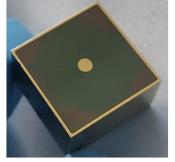
European Network for research and innovation in Radiation-based applications to address Increasing societal CHallenges

Alessandro Scordo:
Action Chair of ENRICH



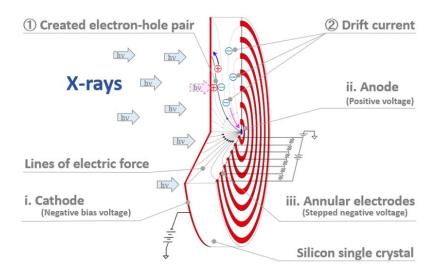
DRESS

Digital high REsolutionposition-sensitive room temperature Semiconductor detectors for high precision radiation Spectroscopy in hadron physics and related areas



Leonardo Abbene: Pl of DRESS

HADRON 2030 proposal:


WP5 TA5: Next-generation Instrumentation and target technologies

DRESS: to push the performance limit of X- and gamma-rays detection

Silicon-drift detector