Diffraction 2012, Las Canarias

Reggeometry of lepton- and hadron-induced reactions

R. Fiore, S. Fazio, L. Jenkovszky, A. Lavorini, and A. Saliy

Goals and objectives

1 Reactions: DVCS: $\gamma^* p \to \gamma p$ (NB: elastic Compton, $\gamma p \to \gamma p$, is less known!), exclusive (diffractive) VMP $\gamma^* p \to V p$ (at HERA) and elastic (diffractive) hadron scattering (*e.g.* $pp \to pp$ at ISR-LHC).

2. Measurables (observables): differential x-tion $d\sigma/dt$ and integrated in $t: \sigma_{el} = \int_{-t_{min}}^{-t_{max}} d\sigma/dt$, slope $B(s, t, Q^2)$, total x-tion σ_t (for elastic scattering only!).

3. Fitting strategy:

a) in DVCS and VMP: $d\sigma/dt$, vs. σ_{el} - which one is the "primitive" ? Coompatibility?!

b) weighting the data point? (the number of data points in pp is by an order of magnitude larger and better than in lepton-induced reactions!

c) simultaneous (multidimensional) vs. "sequent" (sequently in each variable and/or reaction)?

d) experientally measured bins and "symmetrization" (in DVCS and VMP).

e) the "soft" and "hard" components.

Regge-type DVCS amplitude

M. Capua, S. F., R. Fiore, L. L. Jenkovszky, and F Paccanoni Published in: Physics Letters B645 (Feb. 2007) 161-166

Applications for the model can be:

- Study of various regimes of the scattering amplitude vs Q2, W, t (perturbative –> unperturbative QCD)
- Study of GPD_s

DVCS amplitude: $A(s,t,Q^2)_{\gamma^*p\to\gamma p} = -A_0V_1(t,Q^2)V_2(t)(-is/s_0)^{\alpha(t)}$ the *t* dependence at the vertex *pIPp* is introduced by: $\alpha(t) = \alpha(0) - \alpha_1 \ln(1 - \alpha_2 t)$ the vertex $\gamma^*IP\gamma$ is introduced by the trajectory: $\beta(z) = \beta(0) - \beta \ln(1 - \beta_2 z)$ indicating with:= $\ln(-is/s_0)$ the DVCS amplitude can be written as: $A(s,t,Q^2)_{\gamma^*p\to\gamma p} = -A_0e^{b\alpha(t)}e^{b\beta(z)}(-is/s_0)^{\alpha(t)} = -A_0e^{(b+L)\alpha(t)+b\beta(z)}$

Exclusive diffraction

Main kinematic variables

electron-proton centre-of-mass energy:

$$s = (k+p)^2 \approx 4E_e E_p$$

photon virtuality:

$$Q^{2} = -q^{2} = -(k - k')^{2} \approx 4E_{e}E_{e}^{'}\sin^{2}\frac{\theta}{2}$$

photon-proton centre-of-mass energy:

$$W^{2} = (q+p)^{2}$$
, where : $m_{p} < W < \sqrt{s}$

square 4-momentum at the *p* vertex:

$$t = \left(p' - p\right)^2$$

Vector Mesons production in diffraction

> Deeply Virtual Compton Scattering

Diagrams of DVCS (a) and VMP (b) amplitudes and their Regge-factorized form (c)

Basic ideas:

How to combine s, t, and Q^2 dependencies in a binary reaction? Reggeometry=Regge+geometry (play on words, *pun*)

1. The s- and t- dependences are related by the standard Regge-pole model:

$$A(s, t, Q^2) = \xi(t)\beta(t, M, Q^2)(s/s_0)^{\alpha(t)}$$

(see, however, item 3.);

2. The t- and $\tilde{Q}^2 = Q^2 + M_V^2 -$ dependences are combined by geometrical considerations: the slope is related to the masses/virtualities of the external particles (see next figure);

A rough estimates, expected to be valid both for leptons and haddrons is (to be fine-tuned!)

$$\beta(t, M, Q^2) = \exp\left[4\left(\frac{1}{M_V^2 + Q^2} + \frac{1}{2m_N^2}\right)t\right].$$

3. There is only one, universal, Pomeron, but it has two components - soft and hard, their relative weights depending on \tilde{Q}^2 .

b(Q²+M²) - VM

Deeply Virtual Compton Scattering

DVCS properties:

- Similar to VM production, but $\boldsymbol{\gamma}$ instead of VM in the final state
- No VM wave-function involved
- Important to determine Generalized Parton Distributions sensible to the correlations in the proton
- GPD_{s} are an ingredient for estimating diffractive cross sections at the LHC

Pomeron Trajectory

Regge-type:
$$\frac{d\sigma}{dt}(W) = \exp(b_0 t) W^2 \left[2\alpha_{IP}(t) + 2\right]$$

Linear Pomeron trajectory

$$\alpha(t) = \alpha(0) + \alpha'(t)t$$

 $\alpha(0)$ and α' are foundamental parameters to represent the basic features of strong interactions

 $\alpha(0)$: determines the energy dependence of the diff. Cross section

$$\frac{d\sigma}{dt} \propto \exp(b_0 t) W^{4\alpha(t)-4} = W^{4\alpha(0)-4} \cdot \exp(bt); \qquad b = b_0 + 4\alpha' \ln(W)$$

 α ': determines the energy dependence of the transverse extention system

Diffraction: soft -> hard

Vector Meson

$$A(s,t,Q^2,{M_v}^2) = \frac{\tilde{A_s}}{\left(1 + \frac{\tilde{Q^2}}{\tilde{Q_s^2}}\right)^{n_s}} e^{-i\frac{\pi}{2}\alpha_s(t)} \left(\frac{s}{s_{0s}}\right)^{\alpha_s(t)} e^{2\left(\frac{a_s}{\bar{Q^2}} + \frac{b_s}{2m_p^2}\right)t}$$

$$+\frac{\tilde{A_h}\left(\frac{\widetilde{Q^2}}{\widetilde{Q_h^2}}\right)}{\left(1+\frac{\widetilde{Q^2}}{\widetilde{Q_h^2}}\right)^{n_h+1}}e^{-i\frac{\pi}{2}\alpha_h(t)}\left(\frac{s}{s_{0h}}\right)^{\alpha_h(t)}e^{2\left(\frac{a_h}{\widetilde{Q^2}}+\frac{b_h}{2m_p^2}\right)t}$$

$$\frac{d\sigma_{el}}{d|t|} = H_s^2 e^{2L_s(\alpha_s(t)-1)+g_s t} + H_h^2 e^{2L_h(\alpha_h(t)-1)+g_h t}$$

$$+2H_{s}H_{h}e^{L_{s}(\alpha_{s}(t)-1)+L_{h}(\alpha_{h}(t)-1)+(g_{s}+g_{h})t}\cos\left(\frac{\pi}{2}(\alpha_{s}(t)-\alpha_{h}(t))\right)$$

$$H_{s} = \frac{A_{s}}{\left(1 + \frac{\widetilde{Q^{2}}}{\widetilde{Q_{s}^{2}}}\right)^{n_{s}}} \quad H_{h} = \frac{A_{h}\left(\frac{\widetilde{Q^{2}}}{\widetilde{Q_{h}^{2}}}\right)}{\left(1 + \frac{\widetilde{Q^{2}}}{\widetilde{Q_{h}^{2}}}\right)^{n_{h}+1}}$$
$$L_{s} = \ln\left(\frac{s}{s_{0s}}\right) \quad g_{s} = 2\left(\frac{a_{s}}{\widetilde{Q^{2}}} + \frac{b_{s}}{2m_{p}^{2}}\right) \quad \alpha_{s}(t) = \alpha_{0s} + \alpha'_{s}t$$
$$L_{h} = \ln\left(\frac{s}{s_{0h}}\right) \quad g_{h} = 2\left(\frac{a_{h}}{\widetilde{Q^{2}}} + \frac{b_{h}}{2m_{p}^{2}}\right) \quad \alpha_{h}(t) = \alpha_{0h} + \alpha'_{h}t$$

рр

pp

rho0(1)

rho0 (2)

phi (1)

phi (2)

J/psi (1)

J/psi (2)

DVCS (1)

DVCS (2)

	A_s	\widetilde{Q}_s^2	n_s	α_{0s}	α'_s	a_s	b_s	$\tilde{\chi}^2$
pp	5.9 ± 5.7	* * *	0.00	1.05 ± 0.14	0.276 ± 0.474	2.877 ± 2.837	0.00	1.52
$ ho^0$	59.5 ± 29.3	1.33	1.35 ± 0.05	1.15 ± 0.06	0.15	-0.22	1.69	6.56
ϕ	31.8 ± 35.3	1.30	1.32 ± 0.10	1.14 ± 0.12	0.15	-0.85 ± 1.60	2.51 ± 2.67	3.81
J/ψ	34.2 ± 19.0	1.4 ± 0.7	1.39 ± 0.13	1.21 ± 0.05	0.09	1.90	1.03	4.50
$\Upsilon(1S)$	37 ± 101	0.9 ± 1.7	1.53 ± 0.55	1.29 ± 0.26	0.01 ± 0.6	1.90	1.03	1.28
DVCS	9.7 ± 9.0	0.45 ± 0.5	0.94 ± 0.24	1.19 ± 0.09	-0.007 ± 0.3	1.94 ± 4.65	1.74 ± 2.28	1.75

Table 1. Fitting results

	δ	α_{0s}	$\alpha_{0s}(fit)$	α'_s
pp		1.08(DL)	1.05 ± 0.14	0.276 ± 0.474
$ ho^0$	0.22	1.055	1.15 ± 0.06	0.15
ϕ	0.22	1.055	1.14 ± 0.12	0.15
J/ψ	0.8	1.2	1.21 ± 0.05	0.09
$\Upsilon(1S)$	1.6	1.4	1.29 ± 0.26	0.01 ± 0.6
DVCS	0.54	1.135	1.19 ± 0.09	-0.007 ± 0.3

Table 2. $\alpha(0)$, α'

= 1. photoproduction together with the total photoproduction cross section. Lines are the result of a W^{δ} fit to the data at high W-energy values.

Parameter s_{0s} for simplicity is also fixed $s_{0s} = 1$.

* Parameters that doesn't have errors in table[1] were fixed at fitting stage.

Conclusions and prospects:

- 1. There is one, unique Pomeron, but it may have many componts (e.d. "soft" and "hard".
- 2. Regge trajectories are non-linear.
- 1. DVCS and VMP a tool to access to GPD (below):

QCD-factorized form of a DVCS scatterigg amplitude

GPDs cannot be measured directly, instead they appear as convolution integrals, difficult to be inverted !

$$A(\xi,\eta,t) \sim \int_{-1}^{1} dx \frac{GPD(x,\eta,t)}{x-\xi+i\varepsilon}$$

We need clues from
phenomenological models -
Regge behaviour, t-
factorization etc.
$$\sigma_{tot} \sim \Im MA, \quad \frac{d\sigma}{dt} \sim |A|^{2}$$