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— p-N collisions: QCD interactions at E_, up to Vs, ~300TeV

Many questions: origin of the structures in the energy
spectrum? What is the sources & composition of UHECRs?
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Cosmic ray p-N collisions in the atmosphere above “knee” at
~10% GeV/particle can be probed in p-p collisions at the LHC

The LHC provides a significant lever-arm in providing
constraints for hadronic Monte Carlos for UHECR
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* ATLAS data indicates a slower energy rise of o, (pp) than
was predicted by a number of models.

— This leads to a reduction of the predicted proton-air cross section and
on average a deeper shower max. position

* Eg: with this slower rise in o, (pp) SIBYLL interpretation
would move towards heavier elements (QGSJET same trend)
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* SD selection 2> 2 hits on one side only = 122,490 events
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Model predictions nicely bracket ATLAS data on particle multiplicity

 LHCE_ =7TeV 2 p z0f 3x10%eV

* Thus, ATLAS results indicate that New Physics Scenarios for the knee
are unlikely
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* Minimum Bias mid-n energy evolution strongly model dep.

* Extrapolations to the UHE GZK cutoff region: E_ ~ 40 x
E.. (LHC) —large uncertainties need 14 TeV data
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* Inclined Showers: models underestimate the number of muons
— By 25% if the data is pure Fe
— By 100% if the data is pure p
* ATLAS data on multiplicity & muons x p, shows no
corresponding surprises




THE COMPLETE
DIRECT PICTURE

DETECTION OF
COSMIC RAYS AT
COLLIDER DETECTORS
CosmoLEP-CosmoLHC
ACORDE (ALIC) ACME (ATLAS



L3+C

side C

=72\ Muon bundle /%)

Muon multiplicity Aleph  Muon bundle observed in ALEPH Muon bundle observed in L3+3

 CosmolLEP experiments observed an excess of high
multiplicity muon bundle events compared to simulations
by CORSIKA

The Rate depends on: primary energy, composition and
the Interaction details

Shallow experiments are sensitive to the knee
The only LEP result not consistent with the SM!!!

10/3/2011 James L. Pinfold APS Meeting ATLANTA
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ALICE has deployed the ACORDE
detector to trigger on cosmic rays

With a 4-fold coincidence they trigger
on muon showers

They see an excess of high multiplicity
muon “bundles” as did “CosmoLEP”
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e ATLAS would measure CR muons using unprecedented
areas of precision u-tracking ~80m underground

e ATLAS triggered by surface array and internal cosmic ray trigger

e ACME — ATLAS + Surface Array — will provide precise
information on cosmic rays with primary energies around
101> + 107 eV.
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* DAMA, COGENT & CRESST low
threshold detectors are seeing

XENONI00 (2012)

Something ! & | == observed limit (90% CL)

Expected limit of this run:

 DAMA (N)al crystals) : \ , 1“;‘11‘[‘1
* COGENT (Ge cooled with LN, ) |
 CRESST (CaWO4 crystal calo.)

DAMA&COGENT see a consistent

annual modulation signal

— No alternative SM explanation has
been found for the mod.

However, the latest XENON om0 e
WIMP Mass [GeV/c'|

results have completely excluded

the DAMA, COGENT CRESST

signals! LOW MASS DARK MATTER?
— XENON has a high pressure XeTPC




* No Evidence in the data for dark
matter in the antiproton flux
measurement by AMS, PAMELA, etc
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But there was excitement about the
positron excess seen by PAMELA,
FERMI-LAT etc

— The shape of the energy spectrum is
consistent with KK- WIMPs;

antiproton flux [GeV m?s sr]"

1 10
kinetic energy [GeV]

— Unfortunately, the flux is a factor of
100-1000 too big for a thermal relic

e At this point, pulsars are a more
likely explanation
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* Collision rate should vary as Earth’s moves with or against
the WIMP wind.

2-6 keV
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* Cogent also see signs of an
annual modulation 2 that is e e
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[ Colliclac Copplacrieo )
At the LHC missing energy signatures

eg monojet & monophoton channels,
are sensitive to dark matter signals

| collider constraints do not suffer from
astrophysical uncertainties - abundance
of DM near Earth or its velocity dist.

Use effective field theory to provide a 1
description of dark matter production at the LHC:

— Assume here that the particles that mediate DM-SM interactions are
much heavier than typical momentum exchanged in monojet events

— Well approximated by a contact operator

— Assume DM particle is a Dirac fermion

If the DM-SM coupling involves a light mediator then the
collider bounds are considerably weakened
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arXiv:1109.4398v1 [hep-ph] 20 Sep 2011. Lumis at 7 TeV Ecm 1.14 fb-1 ATLAS & 36pbtCMS

* For spin-independent (SI) dark matter couplings, the LHC
bounds constraint m, to be below about 5 GeV for the scalar
and vector operators and below 10 GeV for the gluon operator.

* At higher masses, direct detection experiments have the
advantage




ATLAS 7TeV, 1fb~! VeryHighPt

T T l.II.III[ T T T TTTT T T T T TTT
CMS Preliminary ——— CMS MonoJet 90% CL
Solid : Ob ed o - B 4, m— CMS MonoPhoton 90% CL

ohd : Observ o C.L. Ldt=5fb at Vs=7 TeV == == CDF 2012
| Dashed : Expected ASO ] CDMSII 2011
e Picasso 2009
E COUPP 2011
= Super-K 2004

lceCube 2011 W*W'
== IceCube 2011 bb

._

<
w
o

3
8

o
=
L
=
b
=
S
g=
Q
(]
w)
w)
w
o
T
Q
=
<)
-
Q
S
T
a9
§

Spill—deCIldCIlt 1 - ! Lol ! Lol ! RN
100 10! 102 10 10 1 203
WIMP mass m,, [GeV] v Mass [GeV/c?]

arXiv:1109.4398v1

 The LHC provides the strongest bound on spin dependent dark
matter-nucleon scattering, by about two orders of magnitude.

e The LHC bound becomes less powerful than current direct
detection experiments for m,, >~ 1 > 2 TeV.
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Photon- photon - Photo- productlon
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Forward Spectrometers deployed in a Hamburg Pipe d oy

* Both ATLAS (AFP) and CMS (HPS) are planning to deploy
forward spectrometers at + 220m (Ph-0/1) & +420m (Ph-2)

— Measurement of the momentum of the unbroken protons allow us to
precisely reconstruct the mass of the central system

* Pileup background severely reduced by a fast timing detector
with temporal resolution ~10ps = a few mms vertex
resolution

e AFP is on track to install a Phase-0 detector in 2013-2014
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Tagged proton momentum loss & 0.02<£<0.2
Acceptance | ynical di-photon malss acceptance | 300<+/(&; &,5)<1200 (GeV)
Spatial Resolution ~ 15 um

Angular Resolution ~ 1 prad
Reconstructed Mass Resolution ~ 5GeV

QUARTIC | Time resolution

Si Tracker

Quartic ToF detectors
HAMBURG PIPE 1 HAMBURG PIPE 2

Silica
bars

We use edgeless 3-D Si technology for the proton spectrometer

Fast timing detector based on fused silica Cerenkov radiators
(4 x 8 bars) with x-dependent segmentation
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* EXPLORATORY PHYSICS, EG: anomalous couplings between vy &
W/Z bosons, Higgs production allowing spin and precision
mass determination; monopole production, etc.

* QCD PHYSICS EG:

— Double Pomeron exchange (DPE) measurements in the jet, Z, W
channels, and the search of exclusive production in the jet channel.

— At LHC energy, very high gluon densities are reached and non-linear
QCD effects and new phenomena such as saturation should appear.
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e Search for magnetic Monopole (a singly charged relativistic
monopole has ionization ~4700n x MIP) - with mass < ~7 TeV
& magnetic charge (ng) < n=8-9

» Search for exotic, massive (pseudo-)stable, single or multiply
charged particles (SMPs) with Z/ > 5,with mass up to 7 TeV
and charge as high as ~400, for example:

* Charged black hole remnants from ADD models of LEDs

e Universal Extra dimensions - KK-particles

* Higgs bosons: H** (L-R symmetric models) & H° = N-Nbar
* R-hadrons (Split SUSY, GMSB, SUSY5D)

 Very heavy stable SUSY particles (sleptons, etc.)

* Technibaryons & Mirror fermions

* Q-balls (extended balls of electric charge), Quirks, etc




e MOoEDAL is the largest array of passive detectors ever deployed
at an accelerator — it has 3 basic types of detector:

Trapping Detector  Plas
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ATLAS medium central high no no
CMS relatively low central high no no
ALICE very low veryv central low ves no
LHCbH medium forward medium no no
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[
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14 TeV PYTHIA Drell-Yan, m=1000 GeV
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* (Cross-section limits for magnetic (LEFT) and electric charge
(RIGHT) (arXiv:1112.2999V2 [hep-ph]) assuming:

— Only one MoEDAL event is required for discovery and ~ 100

events in the other (active) LHC detectors
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Lots of future developments in the synergy between LHC collider
results and high energy cosmic ray physics:

— The results from ALFA in the coming months

— We will have p-N running this year (although p-Pb not nitrogen!)

Another important recent development in this area is the creation
of an official ATLAS “Astroparticle Physics Forum”

co-conveners and meeting of ATLAS Astroparticles Forum

Richard Hawkings via ualberta.ca Jul 26 (5 days ago)

Dear All,
As discussed in the OpenEB meeting of Tuesday 22nd May:
1/conferenceDisplay.py?confld=156299

o provide a focus for Astroparticle physics-
of communication to the astrophysics and

After the long shutdown in 2013-2014 we will install AFP Phase-0 —
opening up a new era of high luminosity diffractive physics

Last, but not least we will then be running at 14 TeV E_, !




ADDITIONAL SLIDES
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Collision Event at
7 TeV

QATLAS

EXPERIMENT

2010-03-30, 12:58 CEST
Run 152166, Event 316199

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

 The ATLAS analysis uses MBTS to tag inelastic collisions.
— Acceptance §=M?/s >5x10°% > M, =15.7 GeV for Vs =7 TeV

— The data collected on the 31 March 2010, corresponding to
L= 20.3+0.7 ub™ - peak instantaneous L = 1.2x10?” cm™2 s™*

— Requires at 22 MBTs hits = 1,220,743 data events




