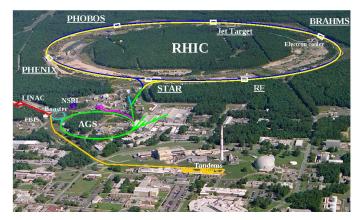
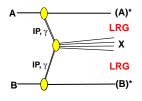
Central Exclusive Production with STAR detector at RHIC


Leszek Adamczyk

On behalf of STAR Collaboration

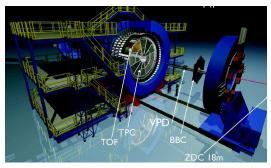
September 12, 2012


RHIC

AA: Au-Au, Cu-Cu, Cu-Au, d-Au, U-U up to $\sqrt{s_{NN}} = 200 \text{ GeV}$ this talk: Au + Au \rightarrow (Au)* + (Au)* + X; $X : \rho^0, J/\Psi$

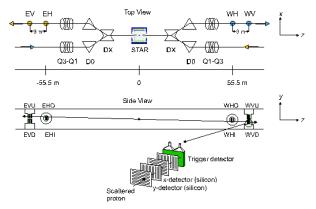
polarized proton-proton: up to $\sqrt{s} = 510 \text{ GeV}$ this talk: $p + p \rightarrow p + p + X$; $X : \pi^+ + \pi^- \to A = 3 +$

Central Exclusive Production in Colliders


Central Exclusive Production (CEP): $A + B \rightarrow (A)^* gap X gap (B)^*$

where *X* is a simple centrally produced system.

 $e^+e^- \text{ from LEP to ILC: } \gamma\gamma \to l^+l^ ep \text{ HERA: } \gamma\gamma \to l^+l^-; \quad \gamma I\!P \to \text{vector mesons}$ $pp(p\bar{p}) \text{ ISR, TEVATRON, RHIC, LHC:}$ $\gamma\gamma \to l^+l^-; \quad \gamma I\!P \to \text{vector mesons}; \quad I\!P I\!P \to \text{hadrons}$ $\text{this talk:} \quad I\!P I\!P \to \pi^+\pi^-$ AA RHIC, LHC: $\gamma\gamma \to l^+l^-; \quad \gamma I\!P \to \text{vector mesons}; \quad I\!P I\!P \to \text{hadrons}$ $\text{this talk:} \quad \gamma I\!P \to \varphi^0, J\Psi$


CEP with STAR detector

$$pp
ightarrow pp X, \quad X = \pi^+ \pi^-$$

AuAu $ightarrow (Au)^* (Au)^* X, \quad X =
ho^0, J/\Psi.$

- high resolution tracking with TPC: $-1 < \eta < 1$
- particle identification: TPC dE/dx, ToF+VPD counters
- possible rapidity gap: BBC veto, $2.1 < \eta < 5.2$

Forward proton tagging at STAR

- 8 Roman Pot stations with 4 silicon strip layers
- full ϕ coverage
- current data

at $\sqrt{s} = 200 \text{ GeV}$; $0.003 < -t < 0.03 \text{ GeV}^2$

• possible upgrade at $\sqrt{s} = 500 \text{ GeV};$

at $\sqrt{s} = 500 \text{ GeV}$; $0.1 < -t < 1.5 \text{ GeV}^2$

御 と くき とくき と

ъ.

CEP in pp collisions 2009 data, $\sqrt{s} = 200 \text{ GeV}$

$$pp
ightarrow ppX, \quad X = \pi^+\pi^-$$

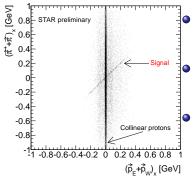
- both scattered protons detected with Roman Pots
- produced state X fully measured with TPC
- acceptance limits kinematics:

$$0.003 < -t_1, -t_2 < 0.03 \text{ GeV}^2$$

 $0.5 < M_{\pi\pi} < 2.3~{
m GeV}$

• in principle both *IPIP* and γ *IP* contribute but:

$$-t(\gamma) \ll -t(IP)$$


γIP → ρ significantly suppressed
 data dominated by low mass production via Double
 Pomeron Exchange

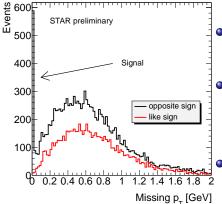
CEP in pp collisions 2009 data, $\sqrt{s} = 200$ GeV

Data selection:

- trigger based on Roman Pots only
- two protons (one on each side of STAR)
- two TPC tracks from primary vertex:

•
$$|\eta| < 1.0$$

data contains elastic $pp \rightarrow pp$ events with overlap with TPC tracks not belonging to the same interaction vertex (collinear line)

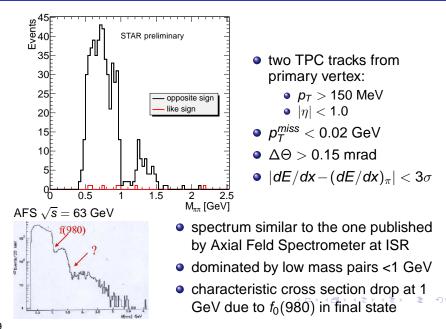

this overlap events can not be removed by momentum balance in the back-to-back pion pairs configuration (cosmics)

remove collinear proton tracks with $\Delta \Theta > 0.15 \mbox{ mrad cut to remove cosmics}$

$$\Delta \Theta = \sqrt{(\Theta_E^{\chi} - \Theta_W^{\chi})^2 + (\Theta_E^{\chi} - \Theta_W^{\chi})^2}$$

CEP in pp collisions 2009 data, $\sqrt{s} = 200 \text{ GeV}$

Data selection:

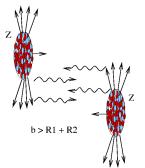


transverse momentum balance

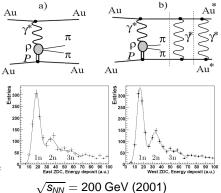
 $p_T^{miss} = |(\vec{p}_E + \vec{p}_W + \vec{\pi^+} + \vec{\pi^-})_T|$

- requirement of p_T^{miss} < 0.02 GeV very efficient in reduction of the non-exclusive background, characterized by large fraction of like-sign tracks
 - almost no like-sign background in the signal region

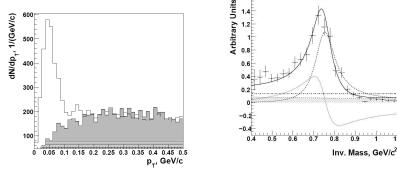
CEP in pp collisions 2009 data, $\sqrt{s} = 200 \text{ GeV}$



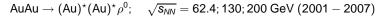
AuAu \rightarrow (Au)*(Au)*X, $X = \rho^0, J/\Psi.$

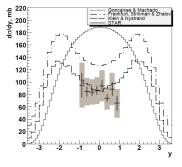

- Relativistic heavy ions is an intense source of photon fluxes
- \bullet virtuality $Q^2 < (\hbar/\textit{R}_{A})^2 < 10^{-3} GeV^2$
- 7,6 GeV $< \sqrt{s_{\gamma N}} <$ 20,6 GeV for Au Au with $\sqrt{s_{NN}} =$ 200 GeV
- large impact parameter → separation of electromagnetic and hadron interactions

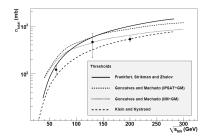
$$\vec{p}_T = \vec{p_T^{\gamma}} + \vec{p_T^{P}}; \quad \frac{\hbar}{b} \approx p_T^{\gamma} < \frac{\hbar}{R_A}; \quad \langle p_T^{P} \rangle \approx \frac{\hbar}{R_A}$$


for gold ($R_A = 7$ fermi) and UPC ($b > 2R_A$) $\rightarrow p_T < \frac{2\hbar}{R_A} = 0.06$ GeV

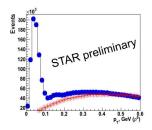
- Photon emitted by one ion fluctuates into a qq̄ state which then interacts with other ion by the Pomeron exchange
- coherent exclusive production (a) triggered by back-to-back tracks in TPC with veto for up-down tracks (cosmics)
- coherent with nuclear excitation (b) triggered by tagging fast forward neutrons coming from de-excitation of (Au)*



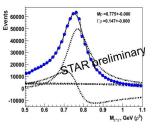

AuAu \rightarrow (Au)^{*}(Au)^{*} ρ^0 ; $\sqrt{s_{NN}} = 62.4 \text{ GeV}$ (2004) Phys. Rev. C 85 (2012) 14910


- open histogram ρ^0 candidates
- hatched histogram like-sign pairs

- dashed line ρ⁰ Breit-Wigner shape
- dash-dotted line non-resonant π⁺π⁻
- dotted line interference term 50

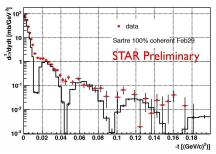


- $\sqrt{s_{NN}} = 200 \text{ GeV} (2001)$
- assumptions for dσ/dy needed to calculate cross sections in full rapidity range

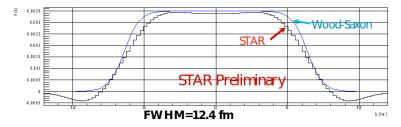


 the rise in cross sections is closer to the models with the saturation of gluon density in nuclear targets

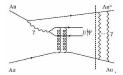
AuAu
$$\rightarrow$$
 (Au)^{*}(Au)^{*} ρ^{0} ; $\sqrt{s_{NN}} = 200 \text{ GeV}$ (2010)



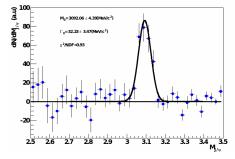
- Iarge statistics 2010 data
- 650 000 ρ^0


- exactly two tracks from the vertex
- pair transverse momentum < 0.15 GeV
- pair rapidity 0.05 < |y| < 1

AuAu \rightarrow (Au)^{*}(Au)^{*} ρ^{0} ; $\sqrt{s_{NN}} = 200 \text{ GeV}(2010)$


- each (Au)* emits 1 neutron
- pair rapidity |y| < 1
- Ino pair p_T cut
- instead dN/dt background subtracted based on the shape and magnitude of the like-sign events
- incoherent component fit to a power law function
- efficiency corrected
- the diffraction pattern is evident up to its third peak
- the slope of the first peak as well as the location of the peaks is consistent with the coherent interaction with an object with dimensions comparable to the Au nucleus
- Sartre is an event generator based on an impact parameter dependent dipole model T.Ulrich and T.Toll
- the diffraction pattern will constrain the models dipole cross section

AuAu
$$ightarrow$$
 (Au)^{*} ho^{0} ; $\sqrt{s_{NN}} = 200 \text{ GeV}(2010)$


- Fourier transform of the $d^2\sigma/dydt$ relates to the partonic form factor of the Au nucleus
- measurement agrees with the Wood-Saxon distribution

AuAu \rightarrow (Au)^{*}(Au)^{*}J/ Ψ ; $\sqrt{s_{NN}} = 200 \text{ GeV}(2010)$

- heavy vector meson production probe short distance scales
- scattering may be described via 2-gluon exchange
- sensitive to gluon distribution at $x \approx 0.01$ and $Q^2 \approx M_{J/\Psi}^2$
- directly probe new type of matter like color glass condensate

STAR Preliminary

- exactly two tracks from the vertex
- pair transverse momentum < 0.15 GeV
- pair rapidity 0.05 < |y| < 1
- like-sign Background subtracted
- efficiency corrected

Summary and outlook

$pp \rightarrow ppX, X = \pi^+\pi^-$

- measurement of the CEP of $\pi^+\pi^-$ pairs in *pp* collisions at $\sqrt{s} = 200$ GeV using Roman Pot tagging of the diffractively scattered protons has been shown
- very small non-exclusive background, estimated by like-sign content of the two-pion sample, has been demonstrated
- further studies of the 200 GeV sample (cross section, interpretation of the measured spectrum, angular distributions, spin dependence, comparison with models) in progress
- preparation for the analogous measurement at 500 GeV in 2013 in progress (30-40 times larger statistics, PWA possible)
- possible trigger based on Rapidity Gap method instead of proton tagging gives access to the very small $-t (\gamma IP \text{ and } \gamma \gamma \text{ CEP})$

 $AuAu
ightarrow (Au)^{\star}(Au)^{\star}X, \quad X =
ho, J/\Psi$

- measurement of the central exclusive production of ρ^0 and J/Ψ vector mesons in the ultra-peripheral collisions of Au-Au at $\sqrt{s_{NN}}$ range 64-200 GeV has been shown
- analysis of the large set of data (2010) in progress