Measurements of Proton-Proton Elastic Scattering and Total

Cross-Section at the LHC by TOTEM

Diffraction 2012 Lanzarote, 15 September

Mario Deile on behalf of the TOTEM Collaboration

Experimental Setup @ IP5

Mario Deile – p. 2

Detectors

Outline: Recent Results

• Measurement of the forward charged particle pseudorapidity density in pp collisions at $\sqrt{s} = 7$ TeV with the TOTEM experiment [EPL 98 (2012) 31002]

• Measurement of proton-proton inelastic scattering cross-section at $\sqrt{s} = 7$ TeV [to be submitted to EPL] \rightarrow Risto Orava's talk

• Luminosity independent measurements of total, elastic and inelastic cross-sections at $\sqrt{s} = 7$ TeV [to be submitted to EPL] \rightarrow this presentation

Elastic Scattering: Data Collection

p. 5

Proton Transport and Reconstruction via Beam Optics

Reconstruction of scattering angles
$$\Theta_x^*$$
 and Θ_y^* :
Optics with $\beta^* = 90$ m:

 $L_v = 263 \text{ m}, v_v \approx 0 \rightarrow \text{Reconstruct via track positions}$

 $L_x \approx 0$, $v_x = -1.9 \rightarrow$ Use derivative (reconstruct via local track angles):

Excellent optics understanding (transfer matrix elements) needed.

$$\Theta_{y}^{*} = \frac{y}{L_{y}}$$
$$\Theta_{x}^{*} = \frac{1}{\frac{dL_{x}}{ds}} \left(\Theta_{x} - \frac{dv_{x}}{ds} \cdot x^{*} \right)$$

Optics Matching

H. Niewiadomski: "Roman Pots for beam diagnostics", Optics Measurements, Corrections and Modelling for High-Performance Storage Rings workshop (OMCM) CERN, 20-23.06.2011.

H. Niewiadomski, F. Nemes: "LHC Optics Determination with Proton Tracks Measured in the Roman Pots Detectors of the TOTEM Experiment", IPAC'12, Louisiana, USA, 20-25.05.2012; arXiv:1206.3058 [physics.acc-ph]

• Optics defined by the magnetic lattice elements T_i between IP5 and RP:

- Magnet currents are continuously measured, but tolerances and imperfections lead to ΔT_i
 - Beam momentum offset ($\Delta p/p = 10^{-3}$)
 - Magnet transfer function error, $I \rightarrow B$, ($\Delta B/B = 10^{-3}$)
 - Magnet rotations and displacements ($\Delta \psi < 1$ mrad, Δx , $\Delta y < 0.5$ mm, WISE database)
 - Power converter errors, k→I, (Δ I/I < 10⁻⁴)
 - Magnet harmonics ($\Delta B/B = O(10^{-4})$ @ R_{ref} = 17mm, WISE database)
- The elements of **T** are correlated and cannot take arbitrary values
- The TOTEM RP measurements provide additional constraints:
 - o single-beam constraints (position-angle correlations, x-y coupling)
 - o two-beam constraints via elastic scattering (Θ^*_{left} vs. Θ^*_{right})
- \rightarrow Matching by a fit with 26 parameters (magnet strengths, rotations, beam energy) and 36 constraints.
- \rightarrow Error propagation to relevant optical functions L_y (1%) and dL_x/ds (0.7%)

Mario Deile – p. 7

 $\Rightarrow \delta t / t \sim 0.8 - 2.6 \%$

Beam-Based Roman Pot Alignment (Scraping)

When both top and bottom pots are touching the beam edge:

- they are at the same number of sigmas from the beam centre as the collimator
- the beam centre is exactly in the middle between top and bottom pot
- \rightarrow Alignment of the RP windows relative to the beam (~ 20 μ m)

Software Alignment

Track-Based Alignment

Residual-based alignment technique: shifts and rotations within a RP unit

Important: overlap between horizontal and vertical detectors !

Alignment Exploiting Symmetries of Hit Profiles

 \rightarrow Fine horizontal alignment: precision better than 10 μ m

Elastic pp Scattering: Event Topology and Hit Maps

Sector 56

Sector 45

Elastic Tagging

Example: elastic collinearity : Scattering angle on one side versus the opposite side

Width of correlation band in agreement with beam divergence (~ 2.4 μ rad)

p. 11

Mario Deile -

Analysis Overview I

Background subtraction

Acceptance correction

θ^{*}_V

150

Analysis Overview II

Resolution unfolding

Efficiency (→ normalisation)

Trigger Efficiency (from zero-bias data stream)	> 99.8% (68% CL)
DAQ Efficiency	(98.142 ± 0.001) %
Reconstruction Efficiency	
 intrinsic detector inefficiency: 	1.5 – 3 % / pot
 elastic proton lost due to interaction: 	1.5% / pot
 event lost due to overlap with beam halo, depends on RP position 	
\rightarrow advantage from 3 data sets, 2 diagonals	4 – 8 %

Elastic pp Scattering: Differential Cross-Section

Elastic Scattering at low |t|: Systematics

TOTEM

Individual contributions:

analysis t-dependent:

- misalignments
- optics imperfections
- energy offset
- acceptance correction
- unsmearing correction

analysis normalization:

- event tagging
- background subtraction
- detector efficiency
- reconstruction efficiency
- trigger efficiency
- "pile-up" correction

Luminosity from CMS (± 4%)

Mario Deile – p. 15

Energy dependence of the exponential slope B

3 Ways to the Total Cross-Section

Excellent agreement between cross-section measurements using

- runs with different bunch intensities,
- different methods.

Estimate of the Low-Mass Diffractive Cross-Section from the Data

Use the total cross-section determined from elastic observables, \mathcal{L} and ρ (via the Optical Theorem)

 $\sigma_{\text{tot}}^2 = \frac{16\pi}{1+\rho^2} \left. \frac{1}{\mathcal{L}} \left. \frac{dN_{\text{el}}}{dt} \right|_0 \quad \Rightarrow \quad \sigma_{\text{inel}} = \sigma_{\text{tot}} - \sigma_{\text{el}} = 73.15 \pm 1.26 \text{ mb}$

and the measured inelastic cross-section for $|\eta| < 6.5$ (T1, T2)

to obtain the low-mass di

 $\sigma_{inel, |\eta|}$

or

 $\sigma_{inel, |\eta| > 6.5} < 6.31 \text{ mb} \quad (95\% \text{ CL})$

$$\sigma_{\text{inel, }|\eta| < 6.5} = 70.53 \pm 2.93 \text{ mb}$$

ffractive cross-section (
$$|\eta| > 6.5$$
 or M < 3.4 GeV):

etive cross-section (
$$|\eta| > 6.5$$
 or M < 3.4 GeV):

ractive cross-section (
$$|\eta| > 0.5$$
 or M < 3.4 GeV):
 $|\eta| > 6.5 = \sigma_{\text{inel}} - \sigma_{\text{inel}, |\eta| < 6.5} = 2.62 \pm 2.17 \text{ mb}$ [MC: 3.2 mb]

Cross-Section Measurements

Absolute Luminosity Calibration

$$\mathcal{L} = \frac{(1+\rho^2)}{16\pi} \frac{(N_{el}+N_{inel})^2}{(dN_{el}/dt)_{t=0}}$$

June 2011: $\mathcal{L}_{int} = (1.65 \pm 0.07) \,\mu b^{-1}$ [CMS: $(1.65 \pm 0.07) \,\mu b^{-1}$]

October 2011: $\mathcal{L}_{int} = (83.7 \pm 3.2) \ \mu b^{-1}$ [CMS: $(82.0 \pm 3.3) \ \mu b^{-1}$]

Excellent agreement with CMS luminosity measurement.

Elastic to Total Cross-Section Ratio

$$\frac{\sigma_{el}}{\sigma_{tot}} = \frac{N_{el}}{N_{el} + N_{inel}} = 0.257 \pm 0.005$$

independent of luminosity and $\boldsymbol{\rho}$

 $\rightarrow \sigma_{el} / \sigma_{tot}$ increases with energy

A First, Very Crude ρ Estimate

$$\rho^{2} = 16\pi \mathcal{L}_{int} \frac{\frac{dN_{el}}{dt}\Big|_{t=0}}{(N_{el} + N_{inel})^{2}} - 1 = 0.009 \pm 0.056$$

ρ < 0.32 (95% CL),

or, using Bayes' approach (with uniform prior $|\rho|$ distribution):

 $|\rho| = 0.145 \pm 0.091$ [COMPETE extrapolation: $\rho = 0.141 \pm 0.007$]

Not so exciting, but ...

ρ Measurement: Elastic Scattering at Low [t]

Measurement of ρ in the Coulomb – Nuclear interference region at $|t| \sim 6 \ge 10^{-4} \text{ GeV}^2$

Reachable with $\beta^* \sim 1000$ m still in 2012 if RPs can approach beam centre to $\sim 4\sigma$

LATEST NEWS

Yesterday at CERN:

- special beam optics with $\beta^* = 1000$ m fully commissioned
- collisions in IP1 and IP5 found
- 4 vertical TOTEM RPs (out of 8) aligned at ~4 σ
- time slot ended \rightarrow no physics data taken yet, but some diagnostics

Physics run scheduled for October 2012

Outlook

Data already available and being analysed:

7 TeV:

- $\beta^* = 3.5$ m: Elastic scattering extended to larger |t|: up to 3.5 GeV^2
- $\beta^* = 90$ m: Diffractive events (SD, DD, DPE)

8 TeV:

- $\beta^* = 90$ m: July 2012: common run with CMS (common trigger, offline data combination)
 - triggers from TOTEM: protons (RP), inelastic min. bias (T2), bunch crossings
 - triggers from CMS: dijets ($p_T > 20 \text{ GeV}$)
 - → Elastic scattering for 7 x 10^{-3} GeV² < |t| < ~1 GeV²
 - → total cross-section measurement with inelastic coverage in $-6.5 < \eta < 6.5$
 - \rightarrow study diffractive dijets with proton information

Data still to be taken this year:

- $\beta^* = 1000$ m: attempt to measure ρ
- $\beta^* = 0.6$ m (standard runs): hard diffraction with CMS
- participation in pA runs, if possible with Roman Pots inserted on the proton side

Long-term plans (after the long shutdown):

- Measurements of elastic scattering and σ_{tot} at $\sqrt{s} = 14 \text{ TeV}$
- Diffraction together with CMS, discussions on common upgrade of forward proton detectors

Backup

Track distribution for an inclusive trigger (global "OR")

 $\beta^* = 3.5 \text{ m}$

How to reach the Coulomb Region ?

→ Challenging but not impossible

Elastic Scattering: $\rho = \Re f(0) / \Im f(0)$

Elastic Tagging

Elastic collinearity : 2.

Proton Transport (Beam Optics)

(x^{*}, y^{*}): vertex position (θ_x^*, θ_y^*): emission angle: $t \approx -p^2 (\theta_x^* + \theta_y^* + \theta_y^*)$ $\xi = \Delta p/p$: momentum loss (diffraction)

$$y_{\rm det} = L_y \theta_y^* + v_y y^*$$

 $\beta^* = 90 \text{ m: } L_y = 263 \text{ m}, \text{ } v_y \approx 0$ $\beta^* = 3.5 \text{ m: } L_y \sim 20 \text{ m}, \text{ } v_y = 4.3$ $\Rightarrow \text{ Reconstruct via track positions}$

$$\frac{dx_{det}}{ds} = \frac{dL_x}{ds} \theta_x^* + \frac{dv_x}{ds} x^*$$

		Beam width @ vertex	Angular beam divergence	Min. reachable t
		$\sigma_{x,y}^* = \sqrt{\frac{\varepsilon_n \beta^*}{\gamma}}$	$\sigma_{x,y}^* = \sqrt{\frac{\varepsilon_n}{\beta^* \gamma}}$	$\left t_{\min}\right = \frac{n_{\sigma}^2 p \mathcal{E}_n m_p}{\beta^*}$
Standard optics	$\beta^* \sim 1-3.5 \text{ m}$	$\sigma_{x,y}^{*}$ small	$\sigma(\theta_{x,y}^{*})$ large	$ t_{min} \sim 0.3 - 1 \text{ GeV}^2$
Special optics	$\beta^* = 90 \text{ m}$	$\sigma_{x,y}^{*}$ large	$\sigma(\theta_{x,y}^{*})$ small	$ t_{min} \sim 10^{-2} \text{ GeV}^2$

Inelastic Cross-Section Visible in T2

Inelastic events in T2: classification

tracks in both hemispheres

non-diffractive minimum bias double diffraction

tracks in a single hemisphere mainly single diffraction $M_X > 3.4 \ GeV/c^2$

Corrections to the T2 visible events

Trigger Efficiency: 2.3 %

(measured from zero bias data with respect to track multiplicity)

Track reconstruction efficiency:
 1%

(based on MC tuned with data)

Beam-gas background: 0.6%

(measured with non colliding bunch data)

Pile-up (μ =0.03):
 1.5 %

(contribution measured from zero bias data)

 $\sigma_{\text{inelastic, T2 visible}}$ = 69.7 ± 0.1 (stat) ± 0.7 (syst) ± 2.8 (lumi) mb

Corrected Inelastic Cross-Section

 $\sigma_{\text{inelastic, T2 visible}}$

Missing inelastic cross-section

- Events visible in T1 but not in T2: (estimated from zero bias data)
- Fluctuation rapidity gap covering T2 : (estimated from T1 gap probability transferred to T2)
- Central Diffraction: T1 & T2 empty : 0.35 % (based on MC, correction max ~0.25 × σ_{CD} , quoted in systematic error)
- Low Mass Diffraction :

(Several models studied, correction based on QGSJET-II-3, imposing observed 2hemisphere/1hemisphere event ratio and the effect of 'secondaries')

 $\sigma_{\text{inelastic}} = 73.7 \pm 0.1^{(\text{stat})} \pm 1.7^{(\text{syst})} \pm 2.9^{(\text{lumi})} \text{ mb}$

4.2 % ± 2.1 % (syst)

 $1.6 \pm 0.4\%$

 $0.35 \pm 0.15\%$

Low-Mass Diffraction

Correction based on QGSJET-II-3

Correction for the low mass single diffractive cross-section: $\sigma_{Mx < 3.4 \text{ GeV}} = 3.2 \pm 1.6 \text{ mb}$

Mario Deile – p. 34