

Study of Inelastic and Diffractive Production in ALICE

O. Villalobos Baillie for the ALICE Collaboration

O. Villalobos Baillie School of Physics and Astronomy The University of Birmingham

- Introduction
- The ALICE Detector
- Data samples
- Classification procedure
- Results Fractions and cross-sections
- Summary

- As part of the **pp interaction** analysis programme, the ALICE collaboration is studying the behaviour of the inelastic cross-section as a function of energy.
- The inelastic cross section can be separated into three main components

 $\sigma_{\rm inel} = \sigma_{\rm SD} + \sigma_{\rm DD} + \sigma_{\rm ND} (+ \sigma_{\rm CD})$

- Central Diffraction (CD not discussed here see separate talk by Felix Reidt)
- In order to determine the inelastic cross-section, each of these processes must be studied separately
- Study involves the use of a *model* for diffractive processes, essential since the detector does not see the full inelastic cross-section.

Diffractive Model

 The ALICE choice is to use the Kaidalov and Poghosyan model, based on a Regge analysis of diffraction.

- Each of the legs R₁, R₂, R₃ can be a Pomeron or a Reggeon
- Couplings determined by a fit to data over a wide energy range.
- At high energies, PPP and PPR terms dominate.
- For PPP dN/dM_x ~ $1/M_x^{1+2\Delta}$
- For PPR dN/dM_X ~ 1/M_X^{2+4 Δ} $\Delta = \alpha_p - 1$
- At low M_x, PPR dominates overall

A.B. Kaidalov and M.G. Poghosyan, Proc. Conf. on Elastic and Diffractive Scattering,

("Blois Workshop", CERN, June 2009: ArXiv:0909.5156)

- Black line Kaidalov-Poghosyan model
- Red dashed-line histogram PHOJET
- Blue histogram PYTHIA 6
- Magenta dotted-dashed line 1/M_x
- (7 TeV only) black dashed lines, $1/M_{\chi}^{1+2\Delta}$, $\Delta = 0.085$, 0.12 (PYTHIA 8)

Classification of Processes

Diffractive and non-diffractive processes are classified using pseudorapidity gaps.

- Single Diffraction (SD) Large gap after leading proton on either left or right hand side (Leading proton *not measured* in this experiment.)
- Double Diffraction (DD) Large central gap, tracks on both sides.

- Diffractive and non-diffractive processes are classified using pseudorapidity gaps.
 - Silicon Pixel Detector (SPD): Innermost two layers of the ALICE Inner Tracking System (ITS). |η|<2 (~ 10⁷ elements).
 - VZERO: Scintillator hodoscopes on either side of the interaction region. -3.7<η<-1.7 (L) and 2.8<η<5.1 (R) (64 elements).
 - Forward Multiplicity Detector (FMD): silicon pad sensors on either side of the interaction region. -3.4<η<-1.7 and 1.7<η<5.1 (5×10⁴ elements).
- Trigger- (Minimum Bias): MB_{OR} defined as (SPD _{OR} VOL _{OR} VOR)

- pp data have been collected at three energies for these studies, using a Minimum Bias trigger:-
 - 900 GeV 7×10⁶ events
 - 2.76 TeV (heavy ion "reference" run)
 - 7 TeV
- Two Monte Carlo generators have been employed:-
 - PYTHIA 6.421 ("Perugia-0" tune)
 - PHOJET 1.12

Modified to follow Kaidalov-Poghosyan diffractive mass distribution

 23×10^6 events

 75×10^6 events

Largest gap Distribution

- For 2-arm events, the distribution of Δη, the largest pseudorapidity gap in the event, allows us to determine the DD contribution
- Distribution cannot be reproduced with either PHOJET or PYTHIA 6 unless the DD fraction is non-zero.
- DD major contribution for $\Delta \eta > 3$.

STRATEGY

- MODIFY the diffractive mass distributions, weighting events so as to reproduce the Kaidalov-Poghosyan distribution
- ADJUST the DD (and SD) fractions so as to
 - approach the measured $\Delta \eta$ distribution
 - exactly reproduce the observed 1-arm/2-arm ratio

Result of Adjustment

- For Δη>3, Δη distribution bracketed by PYTHIA and PHOJET.
- Mid-point closely follows experimental points
- Error limits given by the two generators.

DEFINITION OF DOUBLE DIFFRACTION

- After adjustment, use generators to predict shape of largest central gap distribution in full phase space
- Define DD events to be all those with $\Delta \eta > 3$.

Raw Trigger ratios

	0.9 TeV	2.76 TeV	7 TeV
N ^{left} _{1-arm} /N _{2-arm}	0.0576±0.0002	0.0543±0.0004	0.0458±0.0001
N ^{right} _{1-arm} /N _{2-arm}	0.0906±0.0003	0.0791±0.0004	0.0680±0.0001

Corrected ratios

B. Abelev et al. ArXiv:1208:4968

	0.9 TeV	2.76 TeV	7 TeV
$\sigma_{ ext{sd}}^{ ext{left}}$ / $\sigma_{ ext{INEL}}$	0.1±0.02	0.09±0.03	$0.10^{+0.02}_{-0.04}$
$\sigma_{ m sd}^{ m right}$ / $\sigma_{ m INEL}$	0.11±0.02	$0.11_{-0.05}^{+0.04}$	$0.10^{+0.02}_{-0.03}$
$\sigma_{SD}^{}/\sigma_{INEL}^{}$	0.21±0.03	$0.20^{+0.07}_{0.08}$	$0.20^{\rm +0.04}_{\rm -0.07}$

Errors shown are *systematic*, statistical errors are negligible

Definition of DD: *all* events with a gap $\Delta \eta > 3$

	900 GeV	2.76 TeV	7 TeV
$\sigma_{\text{DD}}/\sigma_{\text{INEL}}$	0.11 ± 0.03	0.12 ± 0.05	0.12 +0.05-0.04

Errors shown are *systematic*, statistical errors are negligible

REMINDER

- Result of adjustment procedure is to obtain generator fractions for PYTHIA and PHOJET needed to bracket the experimental results (and corresponding SD fraction values)
- This is used to extrapolate to the full kinematically allowed pseudorapidity range.
- Double diffractive events defined to be those 2-arm events for which $\Delta\eta$ >3, *irrespective* of generator classification

B. Abelev et al. ArXiv:1208:4968

van der Meer Scans

Scan	√s (TeV)	Colliding bunches	Crossing Angle (µrad)	β* (m)	μ	σ _x (μm)	σ _y (μm)	A×σ _{inel} (mb)
I	7	1	280	2	0.086	44	47	54.2 ± 2.9
П	7	1	500	3.5	0.74	58	65	$\textbf{54.3} \pm \textbf{1.9}$
Ш	2.76	48	710	10	0.12	158	164	$\textbf{47.7} \pm \textbf{0.9}$

- Scans were performed at 2.76 TeV and 7 TeV (twice)
 - For the two 7 TeV scans, conditions were significantly different, so as to check the systematics of the scan.
- Trigger condition was MB_{AND} (hits in both VZERO arrays)
 B. Abelev et al. ArXiv:1208:4968

September 15th 2012

- A technique based on classification of pseudorapidity gaps has been used to determine the fractions of diffractive events in inelastic pp interactions at 900 GeV, 2.76 TeV and 7 TeV.
- From these fractions, the diffractive and inelastic cross sections at these energies have been determined.
 - At 2.76 TeV and 7 TeV the inelastic cross-section data comes from recent van-der-Meer scans.

Experiment	σ_{INEL} (mb)	$\sigma_{INEL}^{\xi>5\times10^{-6}}~(mb)$] г
ALICE	$73.2_{-4.6}^{+2.0}$ (model) ± 2.6 (lumi)	$62.1_{-0.9}^{+1.0}$ (model) ± 2.2 (lumi)	
ATLAS	69.4±6.9 (model) ±2.4 (exp)	60.3±0.5 (syst) ±2.1 (lumi)	
CMS	$68.0\pm4.0 \pmod{\pm 2.0 \text{ (syst)} \pm 2.4 \text{ (lumi)}}$		
TOTEM	$73.5_{-1.3}^{+1.8}$ (syst) ± 0.6 (stat)		

7 TeV Inelastic cross-sections

- Extrapolation to (unmeasured) low diffractive masses uses the Kaidalov-Poghosyan model
- The diffractive fractions $\sigma_{sD}/\sigma_{INEL}$ and $\sigma_{DD}/\sigma_{INEL}$ are found to be almost constant over the energy range 0.9< \sqrt{s} <7 TeV
- The cross-sections obtained are compatible with those from other LHC experiments, and also with available current model predictions.

	√s (TeV)	$\sigma_{_{ m SD}}$ (mb)	$\sigma_{_{ m DD}}$ (mb)
	0.9	$11.2^{+1.6}_{-2.1}$	5.6 ± 2.0
	2.76	$12.2^{+3.9}_{-5.3}$	7.8 ± 3.2
Septe	7	$14.9^{+3.4}_{-5.9}$	9.0 ± 2.6

Diffractive crosssections

Back-Up

September 15th 2012

O. Villalobos Baillie - Diffraction 2012

Classification in Practice

- 3 Categories: 1-arm-Left, 1-arm-Right and 2-arm events
- For events with more than one track
 - $\Delta \eta > d_L, d_R$
 - If η_L in -1≤η≤1 AND η_R in -1<η<1
 - otherwise, $\eta_R < 1$
 - η_L>-1 .
 - any remaining events

- 2-arm event
- 2-arm event
- 1-arm-Left event
- 1-arm-Right event
- 2-arm event

