Connections between diffraction in DIS and diffraction at the LHC

M. Capua

A short summary of DIS diffractive results useful for LHC

Diffraction 2012

Lanzarote, Spain, September 10-15 2012

HERA contribute - two colliding experiments

HERA and LHC

Single-diffractive dissociation (SD)

Double-diffractive dissociation (DD)

 $\sigma_{tot} = \sigma_{ND} + \sigma_{SD} + \sigma_{DD} + \sigma_{CD} + \sigma_{EL}$ modelling diffractive contribute is necessary

Diffraction at HERA

Standard Deep Inelastic Scattering

DIS probes the partonic structure of the proton

Diffractive DIS

<u>Diff DIS probes the partonic structure of</u> <u>colour singlet exchange: DPDFs</u>

 \checkmark exchange of colour singlet producing a rapidity gap in the particle flow \rightarrow LRG method

 \checkmark the scattered proton intact or quasi-intact (low-mass state) \rightarrow Proton tagger method

The object exchanged carrying the vacuum quantum numbers (IP) 4

Kinematic variables

Standard DIS variables: x, W, Q^2 and three diffractive variables

Diffractive variables

t = squared 4-momentum transfer at proton vertex = $(p-p')^2$ x_{IP} = fraction of the *p* mom carried by the *IP* $x_{IP} = \frac{q \cdot (p-p')}{q \cdot p} \approx \frac{Q^2 + M_X^2}{Q^2 + W^2}$

 $\beta = \text{fraction of the } IP \text{ mom carried by the struck quark } \beta = \frac{Q^2}{2q \cdot (p-p')} \approx \frac{Q^2}{Q^2 + M_X^2} = \frac{x}{x_{IP}}$

$$\frac{d^{4}\sigma}{d\beta \ dQ^{2}dx_{IP}dt} = \frac{4\pi\alpha^{2}}{\beta Q^{4}} \left[1 - y + \frac{y^{2}}{2}\right] \sigma_{r}^{D(4)}(\beta, Q^{2}, x_{IP}, t) \qquad \sigma_{r}^{D(4)}(\beta, Q^{2}, x_{IP}, t) = F_{2}^{D(4)} - \frac{y^{2}}{2(1 - y + y^{2}/2)} F_{L}^{D(4)}$$

 $F_2^{D(4)}$ integrated over t needed for LRG comparisons or when the outgoing proton is not detected (no measurement of t)

$$F_{2}^{D(3)}(x,Q^{2},x_{IP}) = \int_{0}^{\infty} d|t| F_{2}^{D(4)}(x,Q^{2},x_{IP},t)$$
⁵

Selection methods

Comparison between methods

ZEUS Nucl.Phys. B816 (2009) 1

ZEUS estimate of p-diss fraction about 20%

No significant dependence on $\beta,~Q^2$ and $x_{\rm IP}$

H1 EPJ C71 (2011) 1578

Same conclusions from H1 Combining FPS HERA I and HERA II data about 20%

 $M_{\rm X}$ method shows similar conclusions

Comparison between experiments

LPS/FPS

Both H1 and ZEUS inclusive data used to extract DPDFs

The combined data provide the most precise determination of the absolute normalisation of the diffractive cross section

see M. Ruspa talk

Results from H1 VFPS

All the measurements in agreement with H1 2006 DPDF fit B 10

H1 LRG - all H1 data combined (DESY 12-041)

Data Set	Q^2 range	Proton Energy	Luminosity
	(GeV^2)	E_p (GeV)	(pb^{-1})
New data samples			
1999 MB	$3 < Q^2 < 25$	920	3.5
1999-2000	$10 < Q^2 < 105$	920	34.3
2004-2007	$10 < Q^2 < 105$	920	336.6
Previously published data samples			
1997 MB	$3 < Q^2 < 13.5$	820	2.0
1997	$13.5 < Q^2 < 105$	820	10.6
1999-2000	$133 < Q^2 < 1600$	920	61.6

|t|<1 GeV² M_y<1.6 GeV 3<Q²<1600 GeV² ×_{IP} <0.05

All the measurements in agreement with H1 2006 DPDF fit B

H1 LRG - Pomeron intercept (DESY 12-041)

see D. Salek talk

$$\boldsymbol{\alpha}(\boldsymbol{t}) = \boldsymbol{\alpha}(0) + \boldsymbol{\alpha}'\boldsymbol{t}$$

 $\alpha_{I\!\!P}(0) = 1.113 \pm 0.002 \text{ (exp.)} ^{+0.029}_{-0.015} \text{ (model)}$

No Q² dependence Very good agreement with previous DIS and PHP results

Proton vertex factorization: $f_{IP}(x_{IP},t)$

b does not depend on β, Q² at fixed x_{IP}: consistent with factorization

Can be used for LHC MCs

ZEUS-LPS

 $\alpha_{IP}(0) = 1.11 \pm 0.02(stat.) \pm 0.02(syst.) \pm 0.02(mod)$ $\alpha'_{IP} = -0.01 \pm 0.06(\exp.)^{+0.04}_{-0.08}(systy.) \pm 0.04(mod.) GeV^{-2}$ $b = 7.1 \pm 0.7(stat.)^{+1.4}_{-0.7}(syst) GeV^{-2}$

H1-FPS:

 $\alpha_{IP}(0) = 1.12 \pm 0.02(\text{exp.}) \pm 0.02(\text{mod.})$ $\alpha'_{IP} = 0.04 \pm 0.02(\text{exp.}) \pm 0.03(\text{mod.}) \, GeV^{-2}$ $b = 5.7 \pm 0.3(\text{exp.}) \pm 0.6(\text{mod.}) \, GeV^{-2}$

H1-LRG:
$$\alpha_{IP}(0) = 1.113 \pm 0.002(\exp.)_{-0.015}^{*0.029} \pmod{2}$$

13

Diffractive PDFs

QCD collinear factorization theorem proved also for DDIS (Collins 1998): $\sigma(\gamma^* p \to Xp) \approx f(z, Q^2, x_m, t) \otimes \hat{\sigma}_{*}(z, Q^2)$

variables describing proton vertex (x_{IP}, t) factorize from those at photon vertex (β , Q^2) to good approximation

14

HERA dPDFs

final states with a hard scale (dijets, charm, ...) confirm that the factorization holds in DDIS!

PDFs included in various MCs

Combining inclusive and dijet data constrains the gluon and quark densities with comparable precision for all z

HERA DPDFs from the H1+ZEUS combined measurements (?) ¹⁵

Exclusive diffraction contribute $V=(\rho, \omega, \phi, J/\psi, \Upsilon, \gamma)$

- \succ W, Q² and t cross
 - section dependence
 - for VM and DVCS
- > Pomeron trajectory

To investigate the transition from soft to hard is possible at HERA Important fot LHC a model to merge soft and hard regimes

 $\sigma(W) \propto W^{\delta} \implies \stackrel{\delta \text{ expected to increase from soft (~0.2, "soft Pomeron")}}{\text{to hard (~1., "hard Pomeron")}}$ $\frac{d\sigma}{dt} \propto e^{-b|t|} \implies \stackrel{b \text{ expected to decrease from soft (~10 GeV^{-2}) to hard}}{(~4-5 GeV^{-2})}$

see D. Szuba talk

Energy dependence in DIS

$$\sigma(W) \propto W^{\delta} \qquad \longrightarrow \qquad \alpha_{IP}(0) = 1 + \delta/4 + \alpha'_{IP}/\langle |t| \rangle$$

$$\delta(t) = 4(\alpha_{IP}(t) - 1) \qquad \mu^2 = (Q^2 + M^2)/4$$

Common hardening of $a_{\text{IP}}(0)$ with μ^2

Soft contribute for light VM up to $\mu^2 \sim 5 \ GeV^2$

DVCS dependence indicates a hard regime

ZEUS: JHEP05(2009)108 H1: Phys.Lett.B659:796-806,2008

Energy dependence in PHP ant t-slope results

 σ ($\gamma p \rightarrow V p$), Q²=0

As the VM mass increases, the process gets harder: large M_V supplies a scale for hard processes \rightarrow apply pQCD models

(from soft to hard)

Same slope for all VM vs ($Q^2 + M^2$)

Summary

A rich research program has been carried out at HERA that has allowed us to improve our knowledge on diffraction. New more precise results are available.

Knowledge and experience gained into the LHC diffractive program: DPFS; Pomeron Flux Modelling;

Study of diffraction may help the realisation of a MC that includes "soft" and "hard" processes.