DIFFRACTIVE PRODUCTION OF CHARM QUARK/ANTIQUARK PAIRS AT RHIC AND LHC

Marta Łuszczak

Institut of Physics

University of Rzeszow

September 10-15, 2012 Lanzarote, Spain

・ロト ・日ト ・ヨト ・ヨト

Plan of the talk

- Introduction
- Parton distributions
- Results
 - k_t-factorization
 - gluon distributions at small-x region
 - γg and $g \gamma$ subprocesses
 - $\gamma\gamma$ subprocesses
 - single and central diffraction
- Conclusions

< D > < B > < E > < E >

Production of heavy quarks $h_1 + h_2 \rightarrow Q + \bar{Q} + X$

Production of heavy quarks

Marta Łuszczak University of Rzeszow

Production of heavy quarks $h_1 + h_2 \rightarrow Q + \bar{Q} + X$

Production of heavy quarks

Production of heavy quarks $h_1 + h_2 \rightarrow Q + \bar{Q} + X$

Dominant mechanism

k_t -factorization

< ロ > < 回 > < 回 > < 回 > < 回 > 、

Production of heavy quarks $h_1 + h_2 \rightarrow Q + \bar{Q} + X$

Formalism of collinear - factorization

$$\frac{d\sigma}{dy_1 dy_2 d^2 p_t} = \frac{1}{16\pi^2 \hat{s}^2} \sum_{i,j} x_1 p_i(x_1, \mu^2) x_2 p_j(x_2, \mu^2) \overline{|\mathcal{M}_{ij}|^2}$$

 $p_{1t} = p_{2t} = p_t$

$$x_1 = \frac{m_t}{\sqrt{s}} \left(\exp(y_1) + \exp(y_2) \right),$$

$$x_2 = \frac{m_t}{\sqrt{s}} \left(\exp(-y_1) + \exp(-y_2) \right)$$

・ロト ・回ト ・ヨト ・ヨト

э

Production of heavy quarks $h_1 + h_2 \rightarrow Q + \bar{Q} + X$

Formalism of k_t -factorization

$$\frac{d\sigma}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} = \sum_{i,j} \int \frac{d^2 \kappa_{1,t}}{\pi} \frac{d^2 \kappa_{2,t}}{\pi} \frac{1}{16\pi^2 (x_1 x_2 s)^2} \overline{|\mathcal{M}_{ij}|^2}$$

$$\delta^2 \left(\vec{\kappa}_{1,t} + \vec{\kappa}_{2,t} - \vec{p}_{1,t} - \vec{p}_{2,t}\right) f_i(x_1, \kappa_{1,t}^2) f_j(x_2, \kappa_{2,t}^2)$$

$$m_t = \sqrt{p_t^2 + m^2}$$

$$x_1 = \frac{m_{1,t}}{\sqrt{s}} \exp(y_1) + \frac{m_{2,t}}{\sqrt{s}} \exp(y_2),$$

$$x_2 = \frac{m_{1,t}}{\sqrt{s}} \exp(-y_1) + \frac{m_{2,t}}{\sqrt{s}} \exp(-y_2).$$

see A. Szczurek talk

◆□ → ◆□ → ◆臣 → ◆臣 → ○

э

Production of heavy quarks $h_1 + h_2 \rightarrow Q + \bar{Q} + X$

$\gamma p \rightarrow c \bar{c} (k_t - factorization)$

Marta Łuszczak University of Rzeszow

Formalism of MRST-QED parton distributions Diagrams

How important are photon initiated processes in hadronic collisions?

Then photon is a parton of proton.

Martin-Roberts-Stirling-Thorne 2004 include photons.

Formalism of MRST-QED parton distributions Diagrams

臣

MRSTQ parton distributions

The factorization of the QED-induced collinear divergences leads to QED-corrected evolution equations for the parton distributions of the proton.

$$\begin{aligned} \frac{\partial q_i(x,\mu^2)}{\partial \log \mu^2} &= \frac{\alpha_s}{2\pi} \int_x^1 \frac{dy}{y} \Big\{ P_{qq}(y) \ q_i(\frac{x}{y},\mu^2) + P_{qg}(y) \ g(\frac{x}{y},\mu^2) \Big\} \\ &+ \frac{\alpha}{2\pi} \int_x^1 \frac{dy}{y} \Big\{ \tilde{P}_{qq}(y) \ e_i^2 q_i(\frac{x}{y},\mu^2) + P_{q\gamma}(y) \ e_i^2 \gamma(\frac{x}{y},\mu^2) \Big\} \\ \frac{\partial g(x,\mu^2)}{\partial \log \mu^2} &= \frac{\alpha_s}{2\pi} \int_x^1 \frac{dy}{y} \Big\{ P_{gq}(y) \ \sum_j q_j(\frac{x}{y},\mu^2) + P_{gg}(y) \ g(\frac{x}{y},\mu^2) \Big\} \\ \frac{\partial \gamma(x,\mu^2)}{\partial \log \mu^2} &= \frac{\alpha}{2\pi} \int_x^1 \frac{dy}{y} \Big\{ P_{\gamma q}(y) \ \sum_j e_j^2 \ q_j(\frac{x}{y},\mu^2) + P_{\gamma \gamma}(y) \ \gamma(\frac{x}{y},\mu^2) \Big\} \end{aligned}$$

Formalism of MRST-QED parton distributions Diagrams

イロン 不良 とくほど 不良 とう

Э

MRSTQ parton distributions

In addition to usual P_{qq} , P_{gq} , P_{gg} , P_{gg} spliting functions new spliting functions apper.

$$\tilde{P}_{qq} = C_F^{-1} P_{qq},$$

$$\begin{aligned} \mathsf{P}_{\gamma q} &= C_F^{-1} P_{gq}, \\ \mathsf{P}_{q\gamma} &= T_R^{-1} P_{qg}, \\ \mathsf{P}_{\gamma \gamma} &= -\frac{2}{3} \sum_i e_i^2 \, \delta(1-y) \end{aligned}$$

momentum is conserved:

$$\int_0^1 dx \, x \, \left\{ \sum_i q_i(x,\mu^2) + g(x,\mu^2) + \gamma(x,\mu^2) \right\} = 1$$

Formalism of MRST-QED parton distributions Diagrams

(a)

Standard diagrams

• Standard diagrams

Formalism of MRST-QED parton distributions Diagrams

< ∃⇒

Photon included diagrams

• Photon included diagrams

Gluon distributions - small-x region gg, γg , $g\gamma$ and $\gamma\gamma$ subprocesses

(a)

Collinear LO gluon and photon distributions

Gluon distributions - small-x region gg, γg , $g\gamma$ and $\gamma\gamma$ subprocesses

(a)

э

Distribution in quark/antiquark transverse momentum at $\sqrt{s} = 500 \text{ GeV}$

Marta Łuszczak University of Rzeszow

Gluon distributions - small-x region gg, γg , $g\gamma$ and $\gamma\gamma$ subprocesses

(a)

э

Distribution in quark/antiquark transverse momentum at $\sqrt{s} = 14$ TeV

Gluon distributions - small-x region gg, γg , $g\gamma$ and $\gamma\gamma$ subprocesses

Distribution in the transverse momentum

Luszczak, Maciula, Szczurek, Phys. Rev. D84 (2011) 4018

Gluon distributions - small-x region gg, γg , $g\gamma$ and $\gamma\gamma$ subprocesses

Distribution in the rapidity

Marta Łuszczak Universi

University of Rzeszow

Formalism Results

Single and central diffraction

Luszczak, Maciula, Szczurek, Phys. Rev. D84 (2011) 4018

イロト イヨト イヨト イヨト

Formalism Results

Formalism

In this approach (Ingelman-Schlein model) one assumes that the Pomeron has a well defined partonic structure, and that the hard process takes place in a Pomeron–proton or proton–Pomeron (single diffraction) or Pomeron–Pomeron (central diffraction) processes.

$$\begin{aligned} \frac{d\sigma_{SD}}{dy_1 dy_2 dp_t^2} &= \kappa \frac{\left| \mathcal{M} \right|^2}{16\pi^2 \hat{s}^2} \left[\left(x_1 q_f^D(x_1, \mu^2) \, x_2 \bar{q}_f(x_2, \mu^2) \right) \right. \\ &+ \left(\left. x_1 \bar{q}_f^D(x_1, \mu^2) \, x_2 q_f(x_2, \mu^2) \right) \right], \\ &\left. \frac{d\sigma_{CD}}{dy_1 dy_2 dp_t^2} &= \kappa \frac{\left| \mathcal{M} \right|^2}{16\pi^2 \hat{s}^2} \left[\left(x_1 q_f^D(x_1, \mu^2) \, x_2 \bar{q}_f^D(x_2, \mu^2) \right) \right. \\ &+ \left(\left. x_1 \bar{q}_f^D(x_1, \mu^2) \, x_2 q_f^D(x_2, \mu^2) \right) \right] \end{aligned}$$

イロン 人口 マイロン

Formalism

The 'diffractive' quark distribution of flavour f can be obtained by a convolution of the flux of Pomerons $f_{\mathbf{P}}(\mathbf{x}_{\mathbf{P}})$ and the parton distribution in the Pomeron $q_{f/\mathbf{P}}(\beta, \mu^2)$:

Formalism

Results

$$q_f^D(x,\mu^2) = \int dx_{\mathbf{P}} d\beta \,\delta(x-x_{\mathbf{P}}\beta) q_{f/\mathbf{P}}(\beta,\mu^2) \,f_{\mathbf{P}}(x_{\mathbf{P}}) = \int_x^1 \frac{dx_{\mathbf{P}}}{x_{\mathbf{P}}} \,f_{\mathbf{P}}(x_{\mathbf{P}}) q_{f/\mathbf{P}}(\frac{x}{x_{\mathbf{P}}},\mu^2) \,.$$

The flux of Pomerons $f_{\mathbf{P}}(x_{\mathbf{P}})$:

$$f_{\mathbf{P}}(x_{\mathbf{P}}) = \int_{t_{min}}^{t_{max}} dt f(x_{\mathbf{P}}, t),$$

with t_{min} , t_{max} being kinematic boundaries.

Both pomeron flux factors $f_{\mathbf{P}}(x_{\mathbf{P}}, t)$ as well as quark/antiquark distributions in the pomeron were taken from the H1 collaboration analysis of diffractive structure function at HERA.

・ロト ・回 ト ・ヨト ・ヨト

Formalism Results

Results

Absorption has been included by multiplying cross section by gap surrival factors (violation of Regge factorization):

for RHIC: dd*0.06; d0 or 0d*0.13 for LHC: dd*0.02; d0 or 0d*0.05

・ロト ・回ト ・ヨト

< ∃⇒

Þ

Formalism Results

Results

<ロ> <四> <四> <三</p>

Formalism Results

Results

<ロ> <四> <四> <三</p>

Formalism Results

Results

・ロト ・回 ト ・ヨト ・ヨト

Formalism Results

Results

Marta Łuszczak University of Rzeszow

・ロト ・四ト ・ヨト ・ヨト

Formalism Results

Different approaches

Alves, Levin and Santoro,

Phys. Rev. D55, 2683 (1997)

- diffractive production of heavy quark/antiquark with UGDF.

Yuan and Chao, Phys. Rev. D**60**, 094012 (1999) -two gluon exchange parametrization of the Pomeron model

< D > < B > < E > < E >

Formalism Results

Different approaches

The lowest order perturbative QCD diagrams for partonic process $gp \rightarrow q\bar{q}p$:

・ロト ・日ト ・ヨト ・ヨト

Formalism Results

The light-cone dipole approach

Diffractive production of heavy flavors was also calculated within the light-cone dipole approach: B.Z. Kopeliovich, I.K. Potashnikova, Ivan Schmidt, A.V.Tarasov,

Phys. Rev. D76 (2007) 034019

< 🗇 🕨 < 🖃

Formalism Results

The light-cone dipole approach

- The experimental point is the results of the measurement of the cross section of diffractive production of D*-mesons in the E690 experiment at Fermilab at √s = 40 GeV and corrected by KPST for branching fraction.
- $\sigma_{diff}(c\bar{c}) = [0.61 \pm 0.12(stat) \pm 0.11(syst)]\mu b$
- our result for $\sigma_{diff}(c\bar{c}) = 0.97 \mu b$

(a)

Conclusions

- Huge sensitivity to gluon distribution and scales for W=14000 GeV.
- We have calculated cross section for many new photon included processes. They are small but there are many of them.
- Some γg processes have similar characteristic as usual single diffractive processes, but turned out to be much smaller.
- The cross sections for single and central diffraction have been calculated. The *SD* cross section smaller by 2 orders of magnitude than the dominant gg term.

(ロ) (四) (三) (三)