Recent Results on Diffractive Dissociations:

 $\pi^-
ightarrow (5\pi)^-$ at 190 GeV/c from COMPASS

Suh-Urk Chung

Brookhaven National Laboratory[†] / Upton, NY, USA Pusan National University^{°°} / Busan, Korea and Technische Universität München [‡] / Munich, Germany

COMPASS Results partly based on the talks presented at:

The XIV $^{\rm th}$ International Conference on Hadron Spectroscopy, Munich, Germany (Hadron2011) 13–17 June 2011

Deutsche Physikalische Gesellschaft (DPG), Mainz, Germany, March 2012

[†] Senior Scientist Emeritus

^{*α*} Visiting Professor (part-time)

[‡] Scientific Consultant (part-time) Excellence Cluster Universe at TU Research Awardee (revisit: part-time) Alexander von Humboldt-Stiftung/Foundation Visiting Professor (part-time) Institute for Advanced Studies (IAS) at TU

Plan of Talk

• Introduction:

Plan of Talk

- Introduction:
- COMPASS Experiment:

$$\pi^- p \text{ (orPb)} \rightarrow \pi^+ \pi^- \pi^+ \pi^- \pi^- p \text{ (orPb)}$$
 at 190 GeV/c
(Diffractive Dissociation of π^- into $\pi^+ \pi^- \pi^+ \pi^- \pi^-$)

Plan of Talk

- Introduction:
- COMPASS Experiment:

$$\pi^- p \text{ (orPb)} \rightarrow \pi^+ \pi^- \pi^+ \pi^- \pi^- p \text{ (orPb)}$$
 at 190 GeV/c
(Diffractive Dissociation of π^- into $\pi^+ \pi^- \pi^+ \pi^- \pi^-$)

 Conclusions and Future Prospects Central Diffractive Production of Exotic Mesons (< 3 GeV) at ALICE and STAR

Regge Trajectories

Isobars:
$$\{R_1, R_2\} \longrightarrow \{\pi^-, (\pi^+\pi^-)(\pi^+\pi^-)\}\$$

 $\{\pi^-, \pi^\pm ((\pi^+\pi^-)\pi^\mp)\}\$
 $\{\pi^+\pi^-, (\pi^+\pi^-)\pi^-\}$

COMPASS: P. Abbon, et al., NIM A577, 455 (2007)

• Data-taking runs:

 $\begin{array}{l} \mu^{+} \text{ beams at 160 GeV}/c \text{ in 2002-2004} \\ \pi^{-} \text{ beams at 190 GeV}/c \text{ in 2004 (two weeks)} \\ \mu^{+} \text{ beams at 160 GeV}/c \text{ in 2006-2007} \\ \text{Hadron}^{\pm} \text{ beams at 190 GeV}/c \text{ in 2008-2009} \\ \mu^{+} \text{ beams at 160 GeV}/c \text{ in 2010} \\ \mu^{+} \text{ beams at 200 GeV}/c \text{ in 2011} \end{array}$

• Data-taking runs:

 $\begin{array}{l} \mu^{+} \text{ beams at 160 GeV}/c \text{ in 2002-2004} \\ \pi^{-} \text{ beams at 190 GeV}/c \text{ in 2004 (two weeks)} \\ \mu^{+} \text{ beams at 160 GeV}/c \text{ in 2006-2007} \\ \text{Hadron}^{\pm} \text{ beams at 190 GeV}/c \text{ in 2008-2009} \\ \mu^{+} \text{ beams at 160 GeV}/c \text{ in 2010} \\ \mu^{+} \text{ beams at 200 GeV}/c \text{ in 2011} \end{array}$

• Data-taking runs:

 μ^+ beams at 160 GeV/c in 2002–2004 π^- beams at 190 GeV/c in 2004 (two weeks) μ^+ beams at 160 GeV/c in 2006–2007 Hadron^{\pm} beams at 190 GeV/*c* in 2008–2009 μ^+ beams at 160 GeV/c in 2010 μ^+ beams at 200 GeV/c in 2011

• Pilot hadron run in 2004 with 190 GeV/c π^- beam at 10^6 /s on Pb, Cu and C targets An example: $|\pi^- + Pb \rightarrow (\pi^+\pi^-\pi^-) + Pb|$ Statistics: $\simeq 500\,000$ events Exclusive events at low t

A New Evidence for a $J^{PC} = 1^{-+}$ exotic meson: PRL 104, 241803 (2010)

• Data-taking runs:

 μ^+ beams at 160 GeV/c in 2002–2004 π^- beams at 190 GeV/c in 2004 (two weeks) μ^+ beams at 160 GeV/c in 2006–2007 Hadron^{\pm} beams at 190 GeV/*c* in 2008–2009 μ^+ beams at 160 GeV/c in 2010 μ^+ beams at 200 GeV/c in 2011

• Pilot hadron run in 2004 with 190 GeV/c π^- beam at 10^6 /s on Pb, Cu and C targets An example: $|\pi^- + Pb \rightarrow (\pi^+\pi^-\pi^-) + Pb|$ Statistics: $\simeq 500\,000$ events Exclusive events at low t

A New Evidence for a $J^{PC} = 1^{-+}$ exotic meson: PRL 104, 241803 (2010)

• Data-taking runs:

 $\begin{array}{l} \mu^{+} \text{ beams at 160 GeV}/c \text{ in 2002-2004} \\ \pi^{-} \text{ beams at 190 GeV}/c \text{ in 2004 (two weeks)} \\ \mu^{+} \text{ beams at 160 GeV}/c \text{ in 2006-2007} \\ \text{Hadron}^{\pm} \text{ beams at 190 GeV}/c \text{ in 2008-2009} \\ \mu^{+} \text{ beams at 160 GeV}/c \text{ in 2010} \\ \mu^{+} \text{ beams at 200 GeV}/c \text{ in 2011} \end{array}$

• Pilot hadron run in 2004 with 190 GeV/ $c \pi^-$ beam at 10⁶/s on Pb, Cu and C targets

An example: $\pi^- + Pb \rightarrow (\pi^+\pi^-\pi^-) + Pb$

Statistics: $\simeq 500\,000$ events

Exclusive events at low t A New Evidence for a $J^{PC} = 1^{-+}$ exotic meson: PRL <u>104</u>, 241803 (2010)

• Runs with a Recoil-Proton Detector (RPD) in 2008-2009

An example: $\pi^- + p \rightarrow (\pi^+ \pi^- \pi^-) + p$ 2008 Statistics: $\simeq 100\,000\,000$ events ($\simeq 400$ times BNL data) Exclusive events at low t Search for $J^{PC} = 0^{\pm -}, 1^{-+}, 2^{+-}, 3^{-+}...$ exotic mesons

COMPASS 2004 Data on

$$\pi^- \operatorname{Pb} \to \pi^- + \pi^+ \pi^- + \pi^+ \pi^- + \operatorname{Pb}$$

384,000 events for all $t' = |t| - |t|_{\min}$

203,000 events for $t' < 0.005~({
m GeV}/c)^2$

• Decompose the $(5\pi)^-$ mass spectrum into partial waves in the isobar model.

- Decompose the $(5\pi)^-$ mass spectrum into partial waves in the isobar model.
- Bin-by-bin extended likelihood fits using an initial collection of more than 800 partial waves.

- Decompose the $(5\pi)^-$ mass spectrum into partial waves in the isobar model.
- Bin-by-bin extended likelihood fits using an initial collection of more than 800 partial waves.
- Using a procedure, the so-called statistical evidence, reduced the needed partial wave to some 40 partial waves

- Decompose the $(5\pi)^-$ mass spectrum into partial waves in the isobar model.
- Bin-by-bin extended likelihood fits using an initial collection of more than 800 partial waves.
- Using a procedure, the so-called statistical evidence, reduced the needed partial wave to some 40 partial waves
- A final collection of 10 partial waves are fitted to mass-dependent parital waves and their interference terms.

- Decompose the $(5\pi)^-$ mass spectrum into partial waves in the isobar model.
- Bin-by-bin extended likelihood fits using an initial collection of more than 800 partial waves.
- Using a procedure, the so-called statistical evidence, reduced the needed partial wave to some 40 partial waves
- A final collection of 10 partial waves are fitted to mass-dependent parital waves and their interference terms.
- Search for resonances in the $(5\pi)^-$ system;

Two new 1^{++} states around 2.0 ${\rm GeV}$

and one 2^{-+} state above 2.0 GeV

1[−](1⁺⁺0⁺) σ [²₁] a_1 (1269) a_1 (1269) → π [⁰₁] ρ (770)

 $1^{-}(1^{++}0^{+})\pi \begin{bmatrix} 1\\1 \end{bmatrix} f_{1}(1285)$ $f_{1}(1285) \rightarrow \pi \begin{bmatrix} 1\\1 \end{bmatrix} a_{1}(1269)$

 $1^-(2^{-+}0^+)\pi \begin{bmatrix} 0\\2\end{bmatrix} f_2(1270)$ $f_2(1270) o \pi \begin{bmatrix} 1\\1\end{bmatrix} a_1(1269)$

 $1^{-}(2^{-+}0^{+})\rho[^{2}_{0}]a_{1}(1269)$ $a_{1}(1269) → π[^{0}_{1}]ρ(770)$

 $1^{-}(2^{-+}0^{+})
ho[^{0}_{2}]a_{2}(1320)$ $a_{2}(1320)
ightarrow \pi[^{2}_{1}]
ho(770)$

 $1^{-}(2^{-+}0^{+})
ho[_{2}^{0}]a_{1}(1269)$ $a_{1}(1269)
ightarrow \pi[_{1}^{0}]
ho(770)$

 $1^{-}(1^{++}0^{+})\pi \begin{bmatrix} 1\\ 1 \end{bmatrix} f_{1}(1285)$ $f_{1}(1285) \rightarrow \pi \begin{bmatrix} 1\\ 1 \end{bmatrix} a_{1}(1269)$

 $1^{-}(1^{++}0^{+})
ho[{1 \atop 0}]f_{0}(1370)$ $f_{0}(1370)
ightarrow
ho(770)[{0 \atop 0}]
ho(770)$

14/20

Conclusions and Future Prospects I

Recent Results and Future Plans at COMPASS:

• Diffractive Dissociations $\pi^-(190 \text{ GeV}/c) \rightarrow \pi^+\pi^-\pi^-$ on Pb and proton targets. The exotic meson $J^{PC} = 1^{-+} \pi_1(1600) \rightarrow \rho\pi$ clearly seen both data samples,

The data from the proton target is currently under intense study by F. Hass/TUM (for his Ph.D. thesis) and by Dima Ryabchikov/IHEP, Protvino—frequent visitor to TUM.

Rich Resonance Spectra as a function of t'. One or two papers planned on the results

15/20

Conclusions and Future Prospects I

Recent Results and Future Plans at COMPASS:

• Diffractive Dissociations $\pi^-(190 \text{ GeV}/c) \rightarrow \pi^+\pi^-\pi^-$ on Pb and proton targets. The exotic meson $J^{PC} = 1^{-+} \pi_1(1600) \rightarrow \rho\pi$ clearly seen both data samples,

The data from the proton target is currently under intense study by F. Hass/TUM (for his Ph.D. thesis) and by Dima Ryabchikov/IHEP, Protvino—frequent visitor to TUM.

Rich Resonance Spectra as a function of t'. One or two papers planned on the results

• $\pi^+\pi^-\pi^+\pi^-\pi^-$ partial-wave decomposition carried out by

Sebastian Neubert of TU/München—PhD Thesis

Three resonances found:

 $a_1(1900), a_1(2200), \pi_2(2100)$

A draft of the paper is in preparation

Conclusions and Future Prospects II

• More results from the partial-wave analysis of the COMPASSdata: $\pi^- p \rightarrow X^- p$ with $X^- \rightarrow (3\pi)^-$, $(5\pi)^-$, $(K\bar{K}\pi)^-$ or $(K\bar{K}\pi\pi\pi)^-$ Conclusions and Future Prospects II

- More results from the partial-wave analysis of the COMPASSdata: $\pi^- p \rightarrow X^- p$ with $X^- \rightarrow (3\pi)^-$, $(5\pi)^-$, $(K\bar{K}\pi)^-$ or $(K\bar{K}\pi\pi\pi)^-$
- STAR and ALICE provide suitable experimental platforms for future resonance searches including J^{PC}-exotics.

Conclusions and Future Prospects II

- More results from the partial-wave analysis of the COMPASSdata: $\pi^- p \rightarrow X^- p$ with $X^- \rightarrow (3\pi)^-$, $(5\pi)^-$, $(K\bar{K}\pi)^-$ or $(K\bar{K}\pi\pi\pi)^-$
- STAR and ALICE provide suitable experimental platforms for future resonance searches including J^{PC}-exotics.
- The exotic J^{PC} 's for X^0 are

 1^{-+} , 3^{-+} , 5^{-+} , etc. for Pb + Pb 2^{+-} , 4^{+-} , 6^{+-} , etc. for γ + Pb

 $\rho^{0}(770) \begin{bmatrix} L \\ S \end{bmatrix} \rho^{0}(770)$ L + S = even

17/20

 $\rho^{0}(770) \begin{bmatrix} L \\ S \end{bmatrix} \rho^{0}(770)$ L + S = even $\begin{bmatrix} L \\ S \end{bmatrix} = \begin{bmatrix} 0 \\ 0,2 \end{bmatrix} \text{ or } \begin{bmatrix} 2 \\ 0,2 \end{bmatrix} \text{ or } \begin{bmatrix} 4 \\ 0,2 \end{bmatrix}$

Thank for your attention...

19/20

20/20