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LOW-MASS, SINGLE- and DOUBLE-
DIFFRACTION DISSOCIATION AT THE LHC
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Triple Regge (Pomeron) limit:

" X 2120 h b
o _ _—_}Né g } = x
dtdx a__j;____p I — - p' 'p -
h h T
ot = I)E : ):)'——'—:-O< .




=0

=1

[

]fi'

FATATAY

beicTpoTHLIA 3a30p
In=

o

} - Eml:rpam

% Pomnenne 9acTHII

Inx
Ay W
= - % I 'L:!'
vz ,f/
0
B In s
[ Af’/
In M? In M;
A
0 ¥
» Ins _
N
Ay, /li M2 Ay,
i
0 ¥



FNAL

p+d — X+ d

30

HEN

" . !
¢ 3 A
> 3 e M
? ] - o
O © 4 {2
v 2w /.. ]
N 0
\\] O 0 Q\ ~
" O O 7 \ -
n il ]
[ = =
(i}

~
TR
:
E 5

5 0995 (/839)- QU — JYP 1/ 2,P



Alternative (to the triple Regge) approach:
Diffraction dissociation and DIS :
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G.A. Jaroszkiewicz and P.V. Landshoff, Phys. Rev. 10 (1974) 170;
A. Donnachie, P.V. Landshoff, Nucl. Phys. B 244 (1984) 322.



JLAB = LHC; y=> P; g"2->t

R. Fiore {\it et al.} EPJ A 15 (2002) 505,hep-ph/0206027;.
R. Fiore {\it et al.} Phys. Rev. D 68 (2004) 014004, hep-ph/0308178.



Low-mass diffraction dissociation at the LHC

L. Jenkovszky, O. Kuprash, J. Lamsa, V. Magas, and R,. Orava:
Dual-Regge approach to high-energy, low-mass DD at the LHC,
Phys. Rev. D83(2011)0566014; hep-ph/1-11.0664.

L. Jenkovszky, O. Kuprash, J. Lamsa and R. Orava: hep-ph/11063299,
Mod. Phys. Letters A. 26(2011) 1-9, August 2011.

Experimentally, diffraction dissociation in proton-proton scattering was in-
tensively studied in the ’70-ies at the Fermilab and the CERN ISR. In par-

ticular, double differential cross section dtjj‘&z was measured in the region
X

0.024 < —t < 0.234 (GeV/c)?, 0 < M? < 0.12s, and (105 < s < 752) GeV?,
and a single peak in M% was identified.

Low-mass single diffraction dissociation (SDD) of protons, pp — pX as well
as their double diffraction dissociation (DDD) are among the priorities at the
LHC. For the CMS Collaboration, the SDD mass coverage is presently limited to
some 10 GeV. With the Zero Degree Calorimeter (ZDS), this could be reduced
to smaller masses, in case the SDD system produces very forward neutrals, i.e.

like a N* decaying into a fast leading neutron. Together with the T2 detectors
of TOTEM, SDD masses down to 4 GeV could be covered.




Pomeron dominance at the LHC

Energy variation of the relative importance of the Pomeron with respect to
contributions from the secondary trajectories and the Odderon:

Sm(A(s,t) — Ap(s,t))
SA(s 1) ’ (1)

where the total scattering amplitude A includes the Pomeron contribution Ap
plus the contribution from the secondary Reggeons and the Odderon.

Starting from the Tevatron energy region, the relative contribution of the
non-Pomeron terms to the total cross-section becomes smaller than the ex-
perimental uncertainty and hence at higher energies they may be completely
neglected, irrespective of the model used.

R(s,t =0) =

(A, 1) — AP(SJ)V.

R(s,t) = 5
>0 A 0)

(2)



At the LHC, in the nearly forward direction, Pomeron exchange dominates;
the rest, e.g. f-exchange, being negligible
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Simple (but approximate) factorization relations

d°opp d*osp1 d*osp2 dUez

dtdM2dM2 ~ dtdM? dth2/

(1)

Assuming e’ dependence for both SD and elastic scattering, integration over
t yields

dM2dM2 dM?
where k =12/(2r — 1), r =bsp/be.

d°opp kd osp1 d* USDQ/ o (2)



While high-mass diffraction dissociation receives much attention, mainly due
to its relatively easy theoretical treatment within the triple Reggeon formalism
and successful reproduction of the data, this is not the case for low-masses,
which are beyond the range of perturbative quantum chromodynamics (QCD).
The forthcoming measurements at the LHC urge a relevant theoretical under-
standing and treatment of low mass DD, which essentially has both spectro-
scopic and dynamic aspects. The low-mass, Mx spectrum is rich of nucleon
resonances. Their discrimination is a difficult experimental task, and theoreti-
cal predictions of the appearance of the resonances depending on s, t and M is
also very difficult since, as mentioned, perturbative QCD, or asymptotic Regge
pole formula are of no use here. Below we concentrate on single diffraction
dissociation; generalization to DDD is straightforward.



The pp scattering amplitude

A(S,t)p =

S ap(t)—1 1+ e—i'irap(t) (1)

-l + R ()

S0

sinmap(t)

where f“(t) and f%(t) are the amplitudes for the emission of « and d valence
quarks by the nucleon, S is the quark-Pomeron coupling, to be determined

below; ap(t) is a vacuum Regge trajectory. It is assumed that the Pomeron
couples to the proton via quarks like a scalar photon.

A single-Pomeron exchange is valid at the LHC energies, however at lower
energies (e.g. those of the ISR or the SPS) the contribution of non-leading
Regge exchanges should be accounted for as well.

Thus, the unpolarized elastic pp differential cross section is

do  [3BF*(t))*
dt — Arsin®[rap(t)/2]

(s/50) 77072, (2)



Similar to the case of elastic scattering, the double differential cross section
for the SDD reaction, by Regge factorization, can be written as

d?c B 954[Fp( )] 2\2ap(t)—2
dtdM% 4w sin®[rap(t )/2]( /M) (1)
B/Zi(l —MX/S) — mWi(t +2m?)/s*

where W;, 1 = 1,2 are related to the structure functions of the nucleon and
W5 > Wj. For high M)z(, the W o are Regge-behaved, while for small M)Z( their
behavior is dominated by nucleon resonances. The knowledge of the inelastic
form factors (or transition amplitudes) is crucial for the calculation of low-mass
diffraction dissociation.



In the LHC energy region it simplifies to:

Bo 9FF()F

~ n-2 Vo
dtdM?% 47

om

(s/M% ) (1)

These expressions for SDD do not contain the elastic scattering limit because
the inelastic form factor Wa(Mx,t) has no elastic form factor limit F(¢) as
Myx — m. This problem is similar to the x — 1 limit of the deep inelastic

structure function Fy(x,Q?). The elastic contribution to SDD should be added
separately:.



At the lower vertex, the inelastic FF (transition amplitude) is the structure

function
—t(1 —x)

" dray (1 + 4m222/(—1))

W2(M}2(7t) ImA(M)Q(at):

(here the Briorken variable # ~ —t/M3), where the imaginary part of the
transition amplitude is

2 ()" Im (M)
mAME D=0 ), e he ol I aE)E

n=0,1,...




The Pomeron-proton channel, Pp — M#% (see the lower part of Fig. 7?7,
right pannel) couples to the proton trajectory, with the I(J*) resonances:
1/2(5/2%), Fi5, m = 1680 MeV, I' = 130 MeV; 1/2(9/2%), Hig, m = 2200
MeV, T =400 MeV; and 1/2(13/27), K; 13, m = 2700 MeV, T" = 350 MeV. The
status of the first two is firmly established [?], while the third one, N*(2700), is
less certain, with its width varying between 350 4+ 50 and 900 £+ 150 MeV (Data
Particle Group Collaboration). Still, with the stable proton included, we have
a fairly rich trajectory, a(M?) (next figure).

Despite the seemingly linear form of the trajectory, it is not that: the trajec-
tory must contain an imaginary part corresponding to the finite widths of the
resonances on it. The non-trivial problem of combining the nearly linear and
real function with its imaginary part was solved in: R. Fiore, L. J., F. Pac-
canoni and A. Prokudin, PR D 70 (2004) 054003; hep-ph/0404021) by means
of dispersion relations.
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The imaginary part of the trajectory can be written in the following way:

Ima(s) = s° Z Cn, % -0(s — sn), (1)

where A\, = Re a(s,).



The real part of the proton trajectory is given by

S
Rea(s) = a(0) + — En cnAn(s)
where
(1—§)T(\, +1) ( s
An — F 171_67An_5—|'2’_
(5) (A, — 6+ 2)3711_52 ! Sn

L(=0)T(An +1)s),
sT'( A\, — 0+ 1)

3 (6—)\n,1;5+1;%) }Q(S—Sn).



SD and DD cross sections
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“Reggeized (dual) Breit-Wigner” formula:

AN+

PPM2t:I AMzt: BtMQZ
Or ( x ) ) m ( x ) ) Znn_aN*(M%)+ g(, a:)
O Im a(M2)

= Bpeint (M2 — MZ, .

- Z Bn F05 - ReaQU2) + ImaQiR)y T 2 ( pr)

F(ZCBJt) — . Tp =

(M2 —m2) (1+ 4m§x2B/(—t))3/2 M2 —m2 —t
1 .
Fp(t) — . —, f(t) _ ebmt
T 0.71

a(t) = a(0) + o't = 1.04 + 0.25¢



SDD cross sections vs. energy.
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Approximation of background to reference
points (t=-0.05)
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Approximation of background to reference
points (t=-0.95)
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B-slopes for SD
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Double differential SD cross sections
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Single differential integrated SD cross
sections
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Opp (MD)

DDD cross sections vs. energy.
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Integrated DD cross sections
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Triple differential DD cross sections
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The parameters and results

bi, (GeV™2) 0.2 asp (mb) 14.13
b% (GeV~2) 3 osp(M < 3.5GeV) (mb) || 4.68
o (GeV—2) 025 osp(M > 3.5GeV) (mb) || 9.45
(0) 1.04 Oies (Mb) 2.48

¢ 1.03 og (mb) 9.45

A, 18.7 opp (mb) 10.68

B, 8.8 opp(M < 10GeV) (mb) ][ 1.05

C, 3792 | | opp(M >10GeV) (mb) || 9.63




Open problems:

1. Interpolation in energy: from the Fermilab and ISR to the
LHC;

2. Inclusion of non-leading contributions;

3. Deviation from a simple Pomeron pole model and
breakdown of Regge-factorization;

4. The background (in M?2);

5. Finite-mass sum rules (duality), inerpolation in M"2).



Prospects (future plans):
central diffractive meson production
(double Pomeron exchange)

AR
P Meson (MA2)
S Frrm(t1,t2,M) -
P(t2)
2 G 4




Thanks for your attention!



From Regge factorization (D.M. Chew, Nucl. Phys. B82 (1974) 422; D.M.
Chew and G.F. Chew, Phys. Letters, B53 (1974) 191),

do B 1 do4 doB
dt sdt gdMadMp 01(AB) dt qdM 4 dgdMp’

where t4 p and M4 p and line numbers are as in the Figure;
ta=(ps—p)°, tp=(ps—p2)’,

M3 = (ps+ps)’, Mg =(ps+ps)°.
Here op(AB) is the total AB cross section.



At high energies, central exclusive states are produced almost background-
free, with constrained quantum numbers. The t— channel exchanges over large
rapidity gaps, can only be photons v, pomerons or odderons (C' = 1 counterparts
of the pomeron).

The quantum numbers of the X state in a double Pomeron exchange (DPE)
in the reaction p+p — p+ p+ X (at the Tevatron) or p+p > p+p+ X (at
the LHC) are constrained by the conservation laws of space and charge parity.
The relative angular momentum of the pomerons is constrained to be even,

PlotTott = (+1)(+1)(-1)F=* = +1 = P|X > .
The charge parity of of the state X can be deduced in the same way:
Clottott >= (+1)(+)(-)* =41 =C|X > .

Furthermore, Q = B=B =5 = 0.

At the CERN ISR, at /s(pp) = 63 GeV, the states X =7nt7x~, KTK~,pp
and 7T 7t~ were observed. The 77~ spectrum had several structures: a
broad fy(600), a narrow f,(980) and a structure possible related to a glueball
f6(1710) but not yet completely identified.



Thank you !



