

Max-Planck-Institut für Kernphysik (Heidelberg, Germany)
on behalf of the LHCb collaboration

7th International Workshop on Diffraction in High Energy Physics 10–15 September 2012, Puerto del Carmen, Lanzarote, Spain

LHCb menu at Lanzarote

- LHCb and its current status
- Electroweak boson production
- Drell-Yan cross-section
- Diffractive studies and energy flow measurements
- Exclusive dimuon production
- Summary

LHCb experiment

- One of the 4 main detectors at the LHC: CP violation, rare decays, New Physics searches
- Forward spectrometer with planar detectors:
- → B hadrons at the LHC are mainly produced at low polar angles
- \rightarrow angular coverage: $2 < \eta < 5$
- → combination of PID and tracking detectors covering the full acceptance: unique@LHC

- Excellent tracking performance:
- \rightarrow momentum resolution of long tracks traversing the full tracking setup $\delta p/p \sim 0.4-0.6\%$
- → great invariant mass resolution and precise vertex reconstruction achieved

- High quality particle identification:
- → RICH system: efficient hadron ID over the wide momentum range – unique@LHC
- \rightarrow Calorimeter and Muon Systems: robust e, γ , muon, hadron separation + trigger
- Selective and flexible trigger system

Data taking: 2009-2012

LHCb Integrated Luminosity at 4 TeV in 2012

year	luminosity	energy (TeV)
2009	6.8 μb ⁻¹	0.9
2010	0.3 nb ⁻¹	0.9
2010	37 pb ⁻¹	7
2011	$0.1 \ { m pb^{-1}}$	2.76
2011	1.0 fb ⁻¹	7
2012	$2.2 \text{ fb}^{-1} \text{ (exp.)}$	8

- ~95 % data taking efficiency
- ~99% r/o channels operational
- ~99% of accumulated data is useful for physics analysis

Running challenges:

- In 2011 and 2012, high luminosity (up to 4.0× 10³² cm⁻² s⁻¹) running
- LHCb design luminosity: 2.0 × 10³² cm⁻² s⁻¹
- Smooth data taking by LHCb despite strong challenge for the trigger, offline reconstruction and data processing

LHCb potential

- LHCb, due to its rapidity coverage, explores particle production in an unique kinematic range:
 - → probes of PDFs at very low and at high values of x and low-Q²: collision between parton at high (known) and low-x (unexplored). For ATLAS/CMS: collisions of two partons with similar x
 - \rightarrow PDF uncertainty increases towards large η
 - \rightarrow low-mass Drell-Yan and W/Z cross-section measurements: probe x values down to ~10⁻⁶ and 10⁻⁴, respectively
- Ability to study low- $p_{_{T}}$ region (<0.5 GeV/c) at large $\eta(>4)$
 - → the only LHC experiment that can investigate this region of the phase space
 - → great potential to study soft QCD processes

Electroweak Boson Production (1)

- Z production studied with 4 decay modes:
- 1) $Z \rightarrow \mu\mu$: \rightarrow 37 pb⁻¹, LHCb-PAPER-2012-008
- 2) $Z \rightarrow ee$ $\rightarrow 1 \text{ fb}^{-1}$, LHCb-CONF-2012-011
- 3,4) $Z \rightarrow \tau(\mu \nu \nu)\tau(\mu \nu \nu)$, $Z \rightarrow \tau(\mu \nu \nu)\tau(e\nu \nu)$ $\rightarrow 0.25 \text{ fb}^{-1}$, LHCb-CONF-2011-041
- Z selection: muons/electrons with high p⊤
- $W^{\pm} \rightarrow \mu^{\pm} v$ selection: high p_{T} and isolated muons (W^{\pm} purity : 78%)
- Lepton charge asymmetries are investigated
- Signal yield is estimated by fitting the p_T spectra of positive and negative muons in data to templates for signal and backgrounds
 - → Signal+Z-related background templates taken from MC, heavy flavor background from data
- W,Z selection efficiencies derived from data
- All results corrected for final state radiation

Electroweak Boson Production (2)

LHCb-PAPER-2012-008

$$A_{\mu} = (\sigma_{W^{+} \to \mu^{+} \nu} - \sigma_{W^{-} \to \mu^{-} \bar{\nu}}) / (\sigma_{W^{+} \to \mu^{+} \nu} + \sigma_{W^{-} \to \mu^{-} \bar{\nu}})$$

MSTW08 arXiv:0901.0002 ABKM09 arXiv:0908.2766 JR09 arXiv:0810.4274 NNPDF arXiv:1002.4407 HERA15 arXiv:0911.0884 CTEQ6M arXiv:0802.0007

- general agreement with the predictions, though some PDFs overestimate the ratios of the cross-sections
- errors include PDF and scale uncertainties
- accuracy of the results will be improved with more data

Drell-Yan Production (1)

- $qq \rightarrow \gamma^* \rightarrow \mu\mu$ process studied with 37 pb⁻¹
- selection: high p_T identified muons with $5 < M_{\mu\mu} < 120 \text{ GeV}$
- Signal extraction using the muon isolation:

$$z = p_{\mathrm{T}}^{\mu} / p_{\mathrm{T}}^{Jet}$$

- \rightarrow for signal $z \rightarrow 1$: checked with Υ and Z data for background z < 1: usually produced in the same direction as the other collision products
- → minimum muon isolation of two muons is used
- Signal yield extraction using a fit to the Minimum Muon Isolation distribution of two muons in data to templates for the signal and background.
- → signal template is taken from PYTHIA, while background templates are mainly taken from data

Drell-Yan Production (2)

- NLO predictions provide good description of the data
- NNLO predictions are about 10-20% higher than NLO at low masses

Detection of diffractive events

- LHCb Vertex Locator (VELO) allows to measure diffractive processes by detecting events with Large Rapidity Gaps (LRG)
- 23 SiStrip stations surrounding the Collision Point being outside magnetic field, just 8 mm away from the beam line
- largest angular coverage among LHCb subsystems
- detection coverage: $1.5 < \eta < 5.0$, $-4 < \eta < -1.5$
- reconstruction of the primary and decay vertices, track seeds + info for the trigger
- excellent performance during data taking

 High detection efficiency for events with LRG over:

$$-3.5 < \eta < -1.5$$

 $2.0 < \eta < 5.0$

Upstream Diffractive Candidate

- quite a few backward tracks reconstructed
- no activity in the main detector acceptance
 - \rightarrow LRG extends over ~3 units of η

14.5. 2010 23:05:53 Run 71816 Event 150752285 bId 2674

Downstream Diffractive Candidate

- >5 forward tracks reconstructed
- no activity in the backward region
 - \rightarrow LRG extends over ~2 units of η

14.5. 2010 23:05:53 Run 71816 Event 150751518 bId 2674

Forward Energy Flow: outline

• Energy Flow (EF):

$$rac{1}{N_{
m int}}rac{dE_{tot}}{d\eta} = rac{1}{\Delta\eta}\left(rac{1}{N_{
m int}}\sum_{i=1}^{N_{part,\eta}}E_{i,\eta}
ight)$$

LHCb-CONF-2012-012

average energy created in a particular η interval per inelastic pp interaction and normalized to the η bin size

- EF directly sensitive to the amount of parton radiation and multi-parton interactions (MPI) at large η
- → MPI features are still not well known: strongly needed for a precise description of the UE
- → possibility to discriminate between MPI models and determine important parameters
- → great input for MC tuning
- improve the existing constraints on ultra high energy cosmic-ray interaction models:
 - → LHC provides first possibility to compare cosmic-ray showering models at Elab of up to ~10¹⁷eV
- it has never been measured at a hadron collider in the pre-LHC era

- EF is measured in 1.9< η <4.9 with low pile-up pp MB data at 7 TeV for the following event classes:
 - → inclusive MB: at least 1 long track in $1.9 < \eta < 4.9$ with p > 2 GeV/c
 - \rightarrow hard scattering: at least 1 long track in 1.9< η <4.9 with p_{T} > 3 GeV/c
 - \rightarrow diffractive enriched: inclusive MB with no backward tracks in $-3.5 < \eta < -1.5$
 - \rightarrow non-diffractive enriched: inclusive MB with at least 1 backward track in $-3.5 < \eta < -1.5$
- Data corrected for detector effects & compared to the generator level predictions (PYTHIAbased and cosmic-ray models)
- Systematic effects: tracking related factors, model dependency, pile-up contamination

Total EF vs PYTHIA tunes

MAX-PLANCK-INSTITUT
FÜR KERNPHYSIK
HEIDELBERG

- EF increases with the momentum transfer in an underlying pp process:
 EF_{hard} > EF_{non-diffr} > EF_{incl} > EF_{diffr}
- PYTHIA-based models underestimate EF at large η and overestimate it at low η in case of all event classes
- PYTHIA LHCb tune and Perugia NOCR predictions for the selected inclusive and non-diffractive enriched events are similar
- Perugia 0 significantly underestimates
 EF at large η in case of all event classes
- PYTHIA8 describes the diffractive enriched EF much better than PYTHIA6

Total EF vs cosmic-ray models

MAX-PLANCK-INSTITUT
FÜR KERNPHYSIK
HEIDELBERG

- EPOS 1.99, SYBILL 2.1, QGSJET01, QGSJETII cosmic ray interaction models
 - → soft processes via Pomeron exchanges (Gribov's Reggeon Field Theory)
 - → hard processes: pQCD or exchanges of semi-hard Pomerons
 - → models are not tuned to LHC data
 - → thanks to Ralf Ulrich and Colin Baus from KIT for providing these predictions
- Good agreement between the data and QGSJETII prediction for the hard scattering EF at large η
- SYBILL 2.1 gives the best description of the inclusive and non-diffractive EF
- None of the models are able to describe the EF measurements for all event classes:
 - → valuable input for MC tuning and MPI/UE models

Exclusive Dimuon Production (1)

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

- Elastic pp \rightarrow p ($\mu\mu$) p process: protons remain intact
- Experimental signature: completely empty event except for two muons (and possibly γ)
- → protons are undetected as they escape through the beam pipe
- Selection: no backward tracks in an event (LRG over 2 units), exactly two reconstructed tracks with 2.0<n<4.5 and $p_{\text{T}}(\mu\mu)$ < 0.9 GeV
- Contamination from non-elastic events, where the other particles travel outside the acceptance
- Signal purity ~70%
- Analysis performed with 3 pb⁻¹ of low pile-up data @ 7TeV

LHCb-CONF-2011-022

measurements

Study of Pomeron and Odderon states. Probe of gluon density at low x

Exclusive Dimuon Production (2)

• Forward track multiplicity for events with LRG over the backward region:

LHCb-CONF-2011-022

• fractions of χ_{c0} , χ_{c1} , χ_{c2} obtained performing a fit to the data using template shapes provided by MC

Exclusive Dimuon Production (3)

• Preliminary results on the cross-sections of different exclusive dimuon processes:

$$\sigma_{J/\psi \to \mu^+ \mu^-}(2 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5) = 474 \pm 12 \pm 51 \pm 92 \text{ pb}$$

$$\sigma_{\psi(2S) \to \mu^+ \mu^-}(2 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5) = 12.2 \pm 1.8 \pm 1.3 \pm 2.4 \text{ pb}$$

$$\sigma_{\chi_{c0} \to J/\psi \gamma \to \mu^+ \mu^- \gamma}(2 < \eta_{\mu^+}, \eta_{\mu^-}, \eta_{\gamma} < 4.5) = 9.3 \pm 2.2 \pm 3.5 \pm 1.8 \text{ pb}$$

$$\sigma_{\chi_{c1} \to J/\psi \gamma \to \mu^+ \mu^- \gamma}(2 < \eta_{\mu^+}, \eta_{\mu^-}, \eta_{\gamma} < 4.5) = 16.4 \pm 5.3 \pm 5.8 \pm 3.2 \text{ pb}$$

$$\sigma_{\chi_{c2} \to J/\psi \gamma \to \mu^+ \mu^- \gamma}(2 < \eta_{\mu^+}, \eta_{\mu^-}, \eta_{\gamma} < 4.5) = 28.0 \pm 5.4 \pm 9.7 \pm 5.4 \text{ pb}$$

$$\sigma_{pp \to p\mu^+ \mu^- p}(2 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5; m_{\mu^+ \mu^-} > 2.5 \text{ GeV/c}^2) = 67 \pm 10 \pm 7 \pm 15 \text{ pb}$$

- → statical+systematical+luminosity uncertainties are listed
- → efficiencies are estimated from simulation
- all measured cross sections are consistent with theoretical predictions which have large uncertainties
 - L. Motyka, G. Watt,, Phys. Rev. D 78, 014023 (2008).
 - W. Schäfer, A. Szczurek, Phys.Rev. D76:094014,2007. arXiv:0811.2488
 - SuperCHIC and Starlight generators

Summary

- LHCb is much more than just a beauty experiment :-) allowing in particular to perform electroweak and QCD measurements in an unique, previously unexplored kinematic range.
- Electroweak results are in reasonable agreement with theoretical predictions.
 Good input for PDF constraining.
- First diffractive related measurements are performed. Diffractive enriched forward energy flow is well described by the PYTHIA8 generator.
- None of the models used are able to describe the forward energy flow measurements for all event classes.
- Preliminary results on the exclusive dimuon production are encouraging.
 Accuracy of the measurements is expected to be significantly improved.

Stay tuned for further results!

Backup: various Z modes

