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Introduction

The BFKL (Balitsky-Fadin-Kuraev-Lipatov) approach is based
on the remarkable property of QCD – gluon reggeization. The
scattering amplitudes are represented by the convolution

ΦA′A ⊗ G ⊗ ΦB′B

pA

pB

ΦAA′

ΦBB′

G
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Introduction

The universal (process independent) Greens’s function G can
be presented as

Ĝ = eY K̂,

K̂ is the BFKL kernel, Y is the total rapidity (Y = ln(s/s0)) .
Talking about the BFKL approach, one usually means BFKL
Pomeron, that is, a colourless state in the t -channel. But the
approach is applicable for any colour state, which two gluons
can form. For QCD, that is for tree colours, there are 6
irreducible representations:

1,8a,8s,10,10,27.

For Nc > 3 there are 7 possible representations.
Now the kernel is known in the NLO both for forward scattering,
i.e. for t = 0 and the colour singlet in the t–channel,
V.S. F., L.N. Lipatov, 1998
M. Ciafaloni, G. Camici, 1998

V.S Fadin NLO BFKL kernel for the adjoint representation



Introduction

and for arbitrary t and any possible colour state in the t–channel
V. S. F., D. A. Gorbachev, 2000
V. S. F., R. Fiore, 2005
For phenomenological applications, the most interesting is the
Pomeron. But from theoretical point of view the gluon channel
(antisymmetric colour octet, or adjoint representation, in the
t-channel) is even more important, first of all because of the
gluon reggeization. It requires fulfillment of the bootstap
relations

〈AA′|eY K̂|BB′〉 = 〈AA′|BB′〉 eYω(t),

in the antisymmetric adjoint representation; ω(t) is the gluon
trajectory.
Now fulfillment of these relations is proved in the NLO.
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Introduction

But there are at least two other reasons for significance of the
kernel of the BFKL equation for the adjoint representation.
One is related to the BKP equation
J. Bartels,1980
J. Kwiecinski, M. Praszalowicz, 1980
-the generalization of the BFKL equation to bound states
consisting of three and more reggeized gluons, in particular the
C-odd three gluon system — Odderon. The colour octet BFKL
kernel appears in the BKP equation for the odderon because
any pair of the three reggeized gluons are in the colour octet
state.
Recently, another application of the BFKL approach, related to
the BDS ansatz
Z. Bern, L. J. Dixon and V. A. Smirnov, 2005
was extensively developed
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Introduction

Verification of the BDS ansatz for the inelastic amplitudes in
N = 4 SUSY and calculation of the remainder factor —
J. Bartels, L. N. Lipatov, A. Sabio Vera, 2009
L. N. Lipatov and A. Prygarin, 2011
It was demonstrated that the BDS amplitude MBDS

2→4 should be
multiplied by the factor containing the contribution of the
Mandelstam cuts, and this contribution was found in the LLA.
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Infrared safety of the kernels for odderon and
remainder factor

Proper BFKL kernel for the adjoint representation is not infrared
safe.
Remind tat the kernel is given by the sum

K̂ = ω̂1 + ω̂2 + K̂r

where the trajectories ω̂i and ”real” part K̂r separately are
infrared singular. In the LO K̂r for singlet and adjoint kernels
differ by the coefficient 1/2.
Cancelation of infrared divergencies in the singlet channel
implies the singularity in the adjoint one.
But the kernels for odderon and remainder factor do not
coinside neither with the proper BKKL kernel, nor with each
other.
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Infrared safety of the kernels for odderon and
remainder factor

In the octet case trajectories must be taken with the coefficient
1/2 (because there are three reggeized gluons, each with its
trajectory, and three paired interactions between them), so that
the odderon pair interaction kernel is

K̂12 =
1
2

(ω̂1 + ω̂2) + K̂r

In the LO this kernel differs from the colour singlet kernel only
by the coefficient 1/2. The kernel for the remainder factors is

K̂ = (ω̂1 + ω̂2 − ω̂) + K̂r

where ω̂12 is the gluon trajectory for the total momenta, and is
infrared safe also.
It is important that the singular part of the trajectory does not
depend on momenta, and the singularities of the real parts of
the singlet and octet kernels differ by the coefficient 1/2, both in
the leading and in the next-to leading orders.
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Infrared safety of the kernels for odderon and
remainder factor

It means that the kernels for odderon and remainder factor
remain infrared safe in the NLO.
It occurs possible to perform explicit cancelation of the infrared
singularities and to write the kernels in physical 2-dimensional
space of transverse momenta.
V. S. F., L. N. Lipatov, 2011
J. Bartels, L. N. Lipatov and G. P. Vacca, 2012
Important property of the LO kernels is conformal invariance
–in coordinate space for odderon kernel,
–in momentum space for the remainder factor kernel.
Supposing conformal invariance of the NLO kernels one can
find easily their eigenvalues.
For remainder factor kernel the limit of large momentum
momentum transfer is suitable for this purpose.
V.S. F., L.N. Lipatov, 2011
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Eigenvalues of the kernel for remainder factor

In the limit
|q1| ∼ |q′

1| � |q| ≈ |q2| ≈ |q′
2| ,

with the denotation ~q1 and ~q ′
1 by ~p and ~p ′, respectively, the

kernel for the reminder factor in N = 4 SUSY takes the form

K (~p, ~p ′) = −δ2(~p − ~p ′) |p|2 αNc

4π2

((
1− αNc

2π
ζ(2)

)

×
∫

d2p ′
(

2
|p ′|2 +

2(~p ′, ~p − ~p ′)

|p ′|2|p − p ′|2
)
− 3α ζ(3)

)
+
αNc

4π2

(
1− αNc

2π
ζ(2)

) ( |p|2 + |p ′|2
|p − p ′|2 − 1

)
+
α2N2

c
32π3 R(~p, ~p ′) ,

where
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Eigenvalues of the kernel for remainder factor

R(~p, ~p ′) =(
1
2
− |p|

2 + |p ′|2
|p − p ′|2

)
ln2 |p|2
|p ′|2 −

|p|2 − |p ′|2
2|p − p ′|2 ln

|p|2
|p ′|2 ln

|p|2|p ′|2
|p − p ′|4

+4
[~p × ~p ′]2

(~p − ~p ′)2

∫ 1

0
dx

1
|(1− x)p + xp ′|2 ln

(1− x)|p|2 + x |p ′|2
x(1− x)|p − p ′|2 .

Due to the rotational and dilatational invariance of the kernel its
eigenfunctions have the simple form

Φνn(~p) = |p|2iνeiφn , (1)

where φ is the angle of the transverse vector −→p with respect to
the axis x . Note, that ν is real and n is integer.
Corresponding eigenvalues are
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Eigenvalues of the kernel for remainder factor

ω(ν,n) = −a (Eνn + a ενn) , a =
αNc

2π
,

where Eνn is the ”energy” in the leading approximation

Eνn = −1
2
|n|

ν2 + n2

4

+ ψ(1 + iν +
|n|
2

) + ψ(1− iν +
|n|
2

)− 2ψ(1)

and the next-to-leading correction ενn can be written as follows

ενn = −1
4

(
ψ′′(1 + iν +

|n|
2

) + ψ′′(1− iν +
|n|
2

)

+
2iν

(
ψ′(1− iν + |n|

2 )− ψ′(1 + iν + |n|
2 )
)

ν2 + n2

4


−ζ(2) Eνn − 3ζ(3)− 1

4

|n|
(
ν2 − n2

4

)
(
ν2 + n2

4

)3 , ψ(x) = (ln Γ(x))′.
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Eigenvalues of the kernel for remainder factor

Here the ζ-functions are expressed in terms of polylogarithms

Lin(x) =
∞∑

k=1

xk

kn , ζ(n) = Lin(1) . (2)

Note, that ω(ν,n) has the important property

ω(0,0) = 0 . (3)

It is in an agreement with the existence of the eigenfunction
Φ = 1 with a vanishing eigenvalue, which is a consequence of
the bootstrap relation.
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Corrections to the reminder factor

Using obtained eigenfunctions one can easily construct the
Green function. This Green function allows to calculate the
remainder functions Rn for an arbitrary number of external legs
in the regions, where there are Mandelstam’s cuts
corresponding to the composite states of two reggeized gluons.
In particular, the remainder function R6 for the gluon transition
2→ 4 was found
V.S. F., L.N. Lipatov, 2011
with the next-to-leading accuracy. The obtained result in three
loops is in an agreement with the recently suggested anzatz
L. J. Dixon, J. M. Drummond and J. M. Henn, 2011
for the remainder function. This anzatz allows to construct the
product of corresponding impact-factors in the
next-to-next-to-leading approximation.
The obtained result allowed also to calculate the collinear
anomalous dimension in the Mandelstam region explicitly in
one loop and its leading and next-to-leading singularities in all
loops. V.S Fadin NLO BFKL kernel for the adjoint representation



Check of the conformal invariance of the kernel for
remainder factor

All these results were obtained supposing conformal invariance
of the kernel for remainder factor. But such kernel obtained
from the ”standard” BFKL kernel is not conformal invariant. In
fact, it was supposed that the ”standard” BFKL kernel is defined
in ”a bad scheme”, and there is ”a good scheme”, which gives a
confirmal invariant kernel. Remind that in the NLO there is an
ambiguity, analogous to the well known ambiguity of the NLO
anomalous dimensions, because it is possible to redistribute
radiative corrections between the kernel and the impact factors.
It permits to make transformations

K̂ → K̂ − αs[K̂(B), Û]

conserving the LO kernel K̂(B) (which is fixed in our case by
the requirement of conformal invariance) and changing the
NLO part of the kernel.
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Check of the conformal invariance of the kernel for
remainder factor

Therefore the ”standard” and conformal invariant kernels has to
be connected by such transformation. In principle, one can
write a formal expression for the operator Û, since the diffe-
rence between these kernels is known. Indeed, let us denote
the diffetence as ∆̂ and the Born kernel K̂B eigenstates |µ〉,
and corresponding eigenvalues ωB

µ . Then, if ∆̂ = αs

[
K̂B, Û

]
,(

ωB
µ′ − ωB

µ

)
〈µ′|αsÛ|µ〉 = 〈µ′|∆̂|µ〉.

It is seen from here that the operator Û exists only if the opera-
tor ∆̂ has zero matrix elements between states of equal ener-
gies. If so, supposing that the states |µ〉 form a complete set,

〈µ′|αsÛ|µ〉 =
∑
µ,µ′

|µ′〉〈µ′|∆̂|µ〉〈µ|
ωB
µ′ − ωB

µ′
.

Check of the above relation is in progress.
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Summary

The kernel of the BFKL equation for the adjoint
representation has a lot of applications.
For odderon and remainder factor this kernel is infrared
stable.
The LO kernel for reminder factor is conformal invariant
with respect to Möbius transformations in transverse
momentum space.
Assuming conformal invariance of the NLO kernel its
eigenfunctions were calculated, remainder function R6 for
the gluon transition 2→ 4 was found with the
next-to-leading accuracy and the collinear anomalous
dimension was calculated.
Check of this assumption is in progress.
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