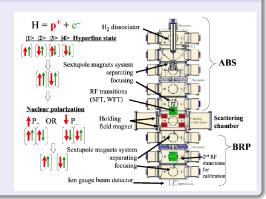

Paolo Lenisa


University of Ferrara and INFN, Italy

LHCspin Kickoff Meeting Ferrara, November 20th, 2025

Atomic beam source with Breit-Rabi polarimeter (BRP)

Storage cell vs free jet

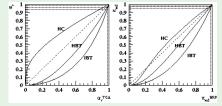
Breit-Rabi polarimeter

- Stern-Gerlach effect + RF-transition to determine HFS occupation number
- Only sensitive to atomic polarization (no information on molecules)
- Viable solution for free-get target (→ A. Nass' talk)
 - Measured polarization at RHIC: P_{target} = 92.4 % \pm 1.8 %

Polarization in a Storage Cell

$$P_T = \alpha_0 \alpha_r P_a + \alpha_0 (1 - \alpha_r) P_m$$

- $P_T \equiv$ total target polarization
- $\alpha_0 \equiv$ atomic fraction in absence of recombination
- $\alpha_r \equiv$ atomic fraction surviving recombination
- $P_a \equiv \text{polarization of atoms}$
- $P_m \equiv$ polarization of recombined molecules

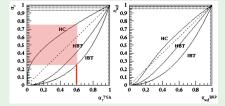

Polarization in a Storage Cell

$$P_T = \alpha_0 \alpha_r P_a + \alpha_0 (1 - \alpha_r) P_m$$

- $P_T \equiv \text{total target polarization}$
- $\alpha_0 \equiv$ atomic fraction in absence of recombination
- $\alpha_r \equiv$ atomic fraction surviving recombination
- $P_a \equiv$ polarization of atoms
- $P_m \equiv$ polarization of recombined molecules

"Sampling corrections" relate measured sample with average values in the cell

- $\bullet \quad \alpha_r = \mathbf{C}_\alpha \alpha_r^{TGA}$
- $P_a = c_P P_a^{BRP}$


Polarization in a Storage Cell

$$P_T = \alpha_0 \alpha_r P_a + \alpha_0 (1 - \alpha_r) P_m$$

- $P_T \equiv$ total target polarization
- $\alpha_0 \equiv$ atomic fraction in absence of recombination
- $\alpha_r \equiv$ atomic fraction surviving recombination
- $P_a \equiv \text{polarization of atoms}$
- $P_m \equiv$ polarization of recombined molecules

"Sampling corrections" relate measured sample with average values in the cell

- $\bullet \quad \alpha_r = \mathbf{C}_\alpha \alpha_r^{TGA}$
- $P_a = c_P P_a^{BRP}$

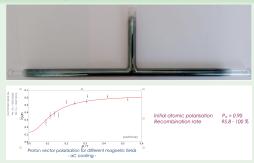
Polarization in a Storage Cell

$$P_T = \alpha_0 \alpha_r P_a + \alpha_0 (1 - \alpha_r) P_m$$

- $P_T \equiv$ total target polarization
- $\alpha_0 \equiv$ atomic fraction in absence of recombination
- $\alpha_r \equiv$ atomic fraction surviving recombination
- $P_a \equiv$ polarization of atoms
- $P_m \equiv$ polarization of recombined molecules

"Sampling corrections" relate measured sample with average values in the cell

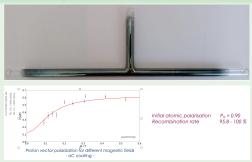
- $\bullet \quad \alpha_r = \mathbf{C}_\alpha \alpha_r^{TGA}$
- $P_a = c_P P_a^{BRP}$



Limits of sampling polarimetry with BRP

- Systematic error increases with recombination and depolarization
- Not able to measure molecular polarization

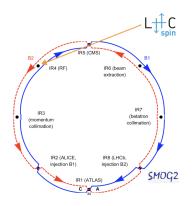
Measurement at FZ-Jülich and Perspectives


Quartz cell coated with amorphous carbon

- Result: recombined molecules preserve polarization! → talk by R. Engels
- Option for a polarized molecular target
 - \rightarrow Note: polarization at 100 K constitutes a lower limit from 300 K

Measurement at FZ-Jülich and Perspectives

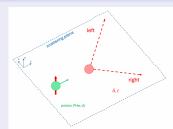
Quartz cell coated with amorphous carbon



- Result: recombined molecules preserve polarization! → talk by R. Engels
- Option for a polarized molecular target
 - ightarrow Note: polarization at 100 K constitutes a lower limit from 300 K

1 - Investigations at Ferrara setup

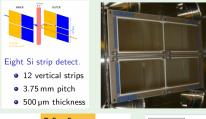
- Measurement not repeatable at FZJ
- Option at Ferrara setup: installation of an amorphous carbon coated cell
 - Measurement of recombination (TGA)
 - Measurement of residual atomic polarization (BRP)

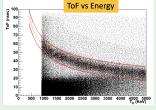

Polarized jet target at LHC Interaction Region 4

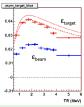
Polarization Measurement by Scattering Asymmetry

Spin-dependent cross section

•
$$\sigma = \sigma_0(1 + A_y P_y \cos \phi)$$

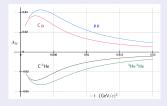

- $ightharpoonup \sigma_0$: unpol. cross section
- P_y : target polarization
- A_y: analyzing power
- ϕ : azimuth of scattered particle


Coulomb Nuclear Interference (CNI)


- \bullet A_y : polarization sensitivity of the scattering process
- Interference of EM and strong interaction \Rightarrow sizable A_y for elastic pp scattering

Polarimetry with CNI at RHIC

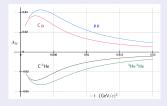
Recoil spectrometer at RHIC



- Si detectors measure T_R & ToF of recoil proton.
- Correlations (T_R & ToF) and (T_R & θ_R) \rightarrow elastic process
- Asymmetry: $\epsilon = \frac{L-R}{L+R} = A_y \cdot P_y \cos \phi \Rightarrow$ derivation of P_y
- Note: sign of P_{ν} periodically reversed to minimize systematic effects

Theoretical predictions (N. Buttimore, Ferrara - 16.07.19)

Analyzing power:



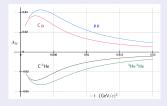
- Cross section at 7 TeV: σ_{tot} = 47 mb (255 GeV: σ_{tot} = 39.2 mb).
- Recoil energies at 7 TeV: 1.7 MeV < T_R <4.6 MeV
- Recoil angles at 90° : 30 mrad $< \theta <$ 50 mrad

Test of absolute polarimetry at IR4

Theoretical predictions (N. Buttimore, Ferrara - 16.07.19)

Analyzing power:

- Cross section at 7 TeV: σ_{tot} = 47 mb (255 GeV: σ_{tot} = 39.2 mb).
- Recoil energies at 7 TeV: 1.7 MeV < T_R <4.6 MeV
- Recoil angles at 90°: 30 mrad < θ < 50 mrad


2 - Requirements for validation of an absolute polarimeter for the LHC

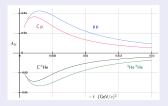
- ABS (jet target) + BRP + recoil detector (\geq 500 μ m Si stop 5 MeV protons)
 - NOTE: Rec. pol. measures weighted atomic + molecular polarization

Test of absolute polarimetry at IR4

Theoretical predictions (N. Buttimore, Ferrara - 16.07.19)

Analyzing power:

- Cross section at 7 TeV: σ_{tot} = 47 mb (255 GeV: σ_{tot} = 39.2 mb).
- Recoil energies at 7 TeV: 1.7 MeV < T_R <4.6 MeV
- Recoil angles at 90°: 30 mrad $< \theta <$ 50 mrad


2 - Requirements for validation of an absolute polarimeter for the LHC

- ABS (jet target) + BRP + recoil detector (\geq 500 μ m Si stop 5 MeV protons)
 - NOTE: Rec. pol. measures weighted atomic + molecular polarization
 - Preliminary: eval. of detection efficiency and background
 - Preliminary: eval. of holding field and effect of beam induced depolarization

Test of absolute polarimetry at IR4

Theoretical predictions (N. Buttimore, Ferrara - 16.07.19)

Analyzing power:

- Cross section at 7 TeV: σ_{tot} = 47 mb (255 GeV: σ_{tot} = 39.2 mb).
- Recoil energies at 7 TeV: 1.7 MeV < T_R <4.6 MeV
- Recoil angles at 90°: 30 mrad < θ < 50 mrad

2 - Requirements for validation of an absolute polarimeter for the LHC

- ABS (jet target) + BRP + recoil detector (\geq 500 μ m Si stop 5 MeV protons)
 - NOTE: Rec. pol. measures weighted atomic + molecular polarization
 - Preliminary: eval. of detection efficiency and background
 - Preliminary: eval. of holding field and effect of beam induced depolarization
- Chamber design and wake fields' simulation (→ Anna's talk)

Stage 1 at IR4: ABS (jet target) + BRP + recoil detector (RD)

- BRP + RD
 - Validation of theoretical predictions of analysing power at 7 TeV

Stage 1 at IR4: ABS (jet target) + BRP + recoil detector (RD)

- BRP + RD
 - Validation of theoretical predictions of analysing power at 7 TeV

Stage 2 at LHCb: ABS + storage cell + BRP + RD

- Option1: implementation of RD at the end of the cell (→ Dima's talk)
- Option 2: implementation of the RD in the middle of the a cell with "windows"
 - ▶ → Cell with two sample tubes in the center with geometrical projection?
- Additional requirements:
 - BRP in front of ABS for tuning of RF transitions
 - $\star \to \text{might depend on the measurements at Ferrara setup}$
 - Unpolarized gas for absolute calibration of target density

Stage 1 at IR4: ABS (jet target) + BRP + recoil detector (RD)

- BRP + RD
 - Validation of theoretical predictions of analysing power at 7 TeV

Stage 2 at LHCb: ABS + storage cell + BRP + RD

- Option1: implementation of RD at the end of the cell (→ Dima's talk)
- Option 2: implementation of the RD in the middle of the a cell with "windows"
 - ▶ → Cell with two sample tubes in the center with geometrical projection?
- Additional requirements:
 - BRP in front of ABS for tuning of RF transitions
 - ★ → might depend on the measurements at Ferrara setup.
 - Unpolarized gas for absolute calibration of target density

3 - Development: study of a polarized molecular target

- Magnetic holding field and homogeneity
- Beam induced depolarization in a molecular polarized target

Stage 1 at IR4: ABS (jet target) + BRP + recoil detector (RD)

- BRP + RD
 - Validation of theoretical predictions of analysing power at 7 TeV

Stage 2 at LHCb: ABS + storage cell + BRP + RD

- Option1: implementation of RD at the end of the cell (→ Dima's talk)
- Option 2: implementation of the RD in the middle of the a cell with "windows"
 - ightharpoonup Cell with two sample tubes in the center with geometrical projection?
- Additional requirements:
 - BRP in front of ABS for tuning of RF transitions
 - \star \rightarrow might depend on the measurements at Ferrara setup
 - Unpolarized gas for absolute calibration of target density

3 - Development: study of a polarized molecular target

- Magnetic holding field and homogeneity
- Beam induced depolarization in a molecular polarized target

Fallback solution

ABS (jet target) + BRP