

IV SuperB Collaboration Meeting 2 June 2012

UPDATE ON SVT MECHANICS IN MILANO

Simone Coelli, Mauro Monti
Servizio Progettazione e Officina Meccanica
INFN Milano

Summary:

- SVT transition cards
- Geometrical disposition and relative mechanics
- Thermal cooling analysis and test prototyping
- Routing of the flat-cables from the HDI to the transition cards
- Design of the connections for Layer Lo and L1-L5
- Routing from the transition cards to the detector outside
- Integration and installation sequence for mechanics and cables
- Quick-demounting constraints on the lay-out
- HDI cooling analysis

SVT transition cards

power lines for the SVT, active components, multiplexer, electrical to optical conversion, fibers connectors

Project cronology:

Starting point: 120 cards in radial disposition

First criticality: Electronics needs more space Panasonic micro-connector 60 contacts Flat cable 10 mm width 120,7

Hypotesis: ask to move back the Cryostat to increase thecard length 30÷50 mm Needed space to place a cooling ring, too.

First step

- Layer L5 needs 18 cards instead of 36 => 102 cards
- Study of a different spatial arrangement:
- Studied and excluded other possible geometrycal planes
- Choosing an inclined card "turbine-like" disposition

Advantage: back side 50 mm height instead of 35 mm

Disadvantages:

- More complex to fix
- Less space between the cards: from 3 to 6 mm (this value may be increased reducing the card thickness)

Assembling study

Transition cards mechanics Panasonic connector 60 contacts *4 mm 3 **Transition card** structural support • thermal contact

Demounting sequence

Length to be increased moving back the cryostat

- NEW DESIGN: CRYOSTAT and W-SHIELDING MOVED BACK 30 mm
- NEW INPUT from Mauro Citterio: both Layers L4 and L5 need less cards => actual total number 86 transition cards

Transition card redesigned with the new dimensions Length increased 15 mm (from 105 mm to 120 mm)

Now it's critical:

- optical interface dimension
- •cables **bended routing** to pass through the openings in the W-shielding => see next slide

To be verified: is it possible to pass with all the cables trought the 12 slots in the W-shielding?

Work in progress

- Half flange detailed mechanical design
- cooling ring details
- Connections with fittings
- Thermal FEA to verify the cooling
- Study of the conductivity of the materials
- Dummy card and sector production to test a cooled prototype with dissipating components or heaters

Transition cards cooling

USING A WATER FLOW (10-15°C)

NO RADIATION, NO CONVECTION HYPOTHESIS (CONSERVATIVE)

Hypotesis and data

Cross section area of the cooling ring

Transition cards Total Power

Cooling fluid: water

Inlet water temperature Outlet water temperature Water ΔT in/out

 $A = 5 \text{ mm x } 11.5 \text{ mm} = 57.5 \text{ mm}^2 = 5.75 \text{ x } 10^{-5} \text{ m}^2$

P = 1000 W (theorical, to see what happens)

$$C_p = 4186 \text{ J/ Kg }^{\circ}\text{C}$$

 $\rho = 1000 \text{ Kg /m}^{3}$

$$T_i = 10 \,^{\circ}\text{C}$$
 $To = 15 \,^{\circ}\text{C}$
 $\Delta T = 5 \,^{\circ}\text{C}$

Transition cards cooling

$$P = \Gamma \cdot C_p \cdot \Delta T$$

$$\Gamma = P / C_p \cdot \Delta T = 1000 / (4186 \cdot 5) = 4.78 \times 10^{-2} \text{ Kg/s}$$

$$Q = \Gamma / \rho = 4.78 \times 10^{-2} / 1000 = 4.78 \times 10^{-5} \text{ m}^3 / \text{s} \approx \boxed{0.05 \text{ I/s}}$$

$$v = Q / A = 4.78 \times 10^{-5} / 5.75 \times 10^{-5} = \boxed{0.83 \text{ m/s}}$$

Water mass flow

Water volumetric flow

Water flow velocity

Thermal FEA and calculations show that a Printed Circuit PCB card conductivity could be critical => together with Mauro Citterio group work in progress to optimize the PCB lay-out

Maybe adding A DEDICATED COPPER LAYER FOR THERMAL DISSIPATION?

Model too complex to analyze, AnsysWB contact regions need to be semplified defeaturing)

Analysis on a singlecard simplified in the conctact region PCB CONDUCTIVITY SENSITIVITY ANALYSIS

FLAT CABLES ROUTING WORK IN PROGRESS

Path of the flat cables

from the LO HDI to the transition card between the carbon cone support and the Tungsten conical shield Note: octagonal geometry

Criticality: width of the cables that have to pass trought dedicated openings Now a 12 mm large cable should pass in a 8 mm slot...

Path of the flat cables

Note: UGS NX modeler now provides a specific design tool to semplify the description of these routings (extremely time consuming activity)

Transition card model with components having more realistic dimensions

Back up slides

