

Tests of Opto-electronics for SuperB: Preliminary Results

A. Aloisio¹, F. Ameli², V. Bocci², R. Giordano¹

 Physics Dept. - University of Napoli "Federico II" and INFN Sezione di Napoli, Italy
 INFN Sezione di Roma 1, Rome, Italy

email: rgiordano@na.infn.it

Outline

- Avago Optical Transceivers
- Test Bench
- Test Results
- Conclusions

Avago Transceiver

AFBR-57R5APZ

SFP case

- High performance 850 nm VCSEL for multi-mode fibers
- Data rate up to 4.25 Gbps
- Link lengths at 2.125 Gbps : 300 m with 50 µm MMF, 150 m with 62.5 µm MMF
- Separate Power Supply for Tx & Rx (3.3 V)
- Embeds uC for real time monitoring of
 - Average transmitted & received optical power
 - Laser bias current
 - Temperature
 - Supply voltage

Optoelectronics Test Bench

Test conditions

- Line rate = 2 Gbps
- Data encoded with 8b10b protocol
- Vcc set to minimum (3.0V), typical (3.3V), maximum (3.6V) to investigate for power supply dependence of rad tolerance
- Runs with different dose rates from 1.2 to 3.8 Gy(Si)/min
- □ total dose of 354 Gy (Si)
- 50 µm multimode fibers
- 10dB attenuators for the offbeam receiver and transmitter

Word Error Trends

- No errors at all at the transmitter
- At the receiver, both isolated and burst errors ('many' consecutive incorrect words)
- 239 isolated errors
- 4 burst errors (80, 640,710,740)
- What is the cause of error bursts? uC failure? Photodiode? TIA? Discriminator?

Error Distributions

- Overall for the runs, cutting burst errors off
- More than 80% of the word errors have less than 5 incorrect bits
- Nearly flat distribution of bit errors inside errored words

Error Free Interval

- On average 1.4 Gy (Si) absorbed dose between an error and the next one
- Probably good fit with an exponential (to be done) =>
- Errors are independent events
- Assuming total dose equivalent to 5 kGy (Si) of 62-MeV protons in 10⁷ s (43 Gy(Si)/day) =>
- 30 word errors per day

Current Trends

- Current drawn by both tx and rx did not change due to irradiation
- Steps due to intentional variation of the supply voltage (typ to max and max to min)

Optical power for both tx and rx did not change due to irradiation Variation in the received power due to intentional variation of the supply voltage

From Belle Optical Transceivers vs. γ-Rays

Belle tested the same transceiver

- AVAGO (AFBR-57R5APZ)
 - 1. Killed by 3.4-year-equivalent dose (126Gy/h × 160min). [336 Gy]
 - 2. Killed by 3.0-year-equivanent dose (169Gy/h × 108min). [304 Gy]
- FINISAR (FTLF8524P2BNV)
 - 1. Killed by 3.4-year-equivalent dose (126Gy/h × 160min).
 - 2. Killed by 3.3-year-equivalent dose (169Gy/h × 118min).

Threshold is around 3-year-equivalent γ-ray dose.

- More rad-hard transceiver option
 - We will study a more rad-hard 2Gbps transceiver used in PHENIX, which will work for >10-yr-equivalent γ-ray dose.

Takeo Higuchi (KEK); TWEPP2011; Sep.28,201

From Belle (2)

Estimation of Belle II Radiation

	Neutrons	γ-rays
Dose / electronics	~10 ¹¹ / year	~ 100 Gy / year
Peak energy	~ 5 MeV	\sim 8 keV and $m_{ m e}$
	в	elle II will run for >10

Tough electronics against the radiation is one of key issues for the stable Belle II DAQ.

Hereafter, 1-year-equivalent neutron dose = 10^{11} neutrons 1-year-equivalent γ -rays dose = 100 Gy

Takeo Higuchi (KEK); TWEPP2011; Sep.28,2011

4

From Belle (3) FPGA vs. γ-Rays

Virtex5 FPGA

- 1. Survived for 7.9-year-equivalent dose [790 Gy]
 - 126Gy/h × 180min + 169Gy/h × 146min.
- 2. Survived for 73-year-equivalent dose. [7.2 kGy]
 - 2.1kGy/h × 206min.
- 3. Survived for 88-year-equivalent dose [8.7 kGy]
 - 100Gy/h × 60min + 5.4kGy/h × 96min.

The Virtex5 is tough against γ-ray dose.

We observe no SEU.

Takeo Higuchi (KEK); TWEPP2011; Sep.28,2011

19

From Versatile Link (2)

March '12

VTRx Package Developments

Versatile Link

- Prototypes VTRx (TX & RX) and dual VTTx produced using rapid prototyping.
- Tested over temperature range from -30C to +60C.
- Will produce 30 prototypes for users.
- EMI testing
 - No indication of excess emissions
 - Need to specify allowed levels & test with modules.

Conclusions

- This test has been performed with 8b10b coding, and the following considerations might depend on that
- For a total dose equivalent to 5 kGy (Si) of 62-MeV protons in 10⁷ s we get ~ 30 word errors (~ 90 bit errors) per day
- Error composition: isolated (98.4%) and burst errors (1.6%)
- Assuming to use the most reliable SerDes we tested (DS92LV18)
 - optical transceivers would be the dominant source of errors
 - 10% of word errors trigger losses of lock (i.e. loss of recovered clock) => 9 per effective day => in a sense this would be less reliable than FPGAbased links
- Belle tested the same optical transceiver and reports devices cannot tolerate more than 320 Gy (Si) of γ
- Belle aims at deploying FPGAs on detector, V5 tested with γ neither SEUs nor TID effects
- Versatile Link prototyped 5 Gbps optical transceivers
- We will have the next testbeam in July (Catania, 62-MeV protons), will further test the optical transceivers without coding

Back-up Slides

Summary of SerDes Performance

Mean Time Between Failures

Expected failure rates at SuperB for a 5 kGy (Si) dose in one effective year (10^7 s)

DS92LV2421: no current variations, but many burst errors even in mild irradiation conditions, it is the least tolerant device DS92LV18: SEUs and current variation due to TID TLK2711A: SEUs and unrecoverable failure at 460 Gy (Si) V5 FPGA: SEUs and current trend removed by re-configuration, no TID effects

The DS92LV18 is the most reliable among the tested SerDeses to date

Burst Errors

Raffaele Giordano SuperB Elba, May 2012

