

B Physics at CMS

Luca Martini (INFN Pisa & Uni Siena) for the CMS collaboration

4th SuperB Collaboration Meeting La Biodola (Isola d'Elba) Italy

Summary

- The CMS experiment at the LHC
- Most recent published analyses
- A deeper look at the $B_s \rightarrow \mu^+ \mu^-$ analysis
- Outlook

LHC Integrated Luminosity

- Great performance of the LHC machine since 2010
- Instantaneous luminosity now around 6 x 10³³ cm⁻² s⁻¹
- Expected 15-20 fb⁻¹ at the end of 2012 (@ 8TeV)

expected around 45 fb⁻¹ in 2015, hundreds in 2020

JINST 3, S08004 (2008)

Muon track reconstruction

- Tracks: Excellent p_T resolution $\approx 1\%$
- Tracking efficiency > 99% for central muons
- Excellent vertex reconstruction and impact parameter resolution (≈ 15 µm)
- Muon candidates: Match between muon segments and a silicon track
- Large pseudorapidity coverage: |η| < 2.4

• Muon efficiencies evaluated with

- 1. MC methods
- 2. Data-driven methods: Tag & Probe

CMS-PAS-MUO-10-002

BPhysics Triggers

- BPhysics at CMS relies on dimuon triggers
- Trigger requirements tightening, following the increasing instantaneous luminosity
- Rates of few Hertz
 - the total CMS rate is few hundreds Hz
- Trigger selections based on:
 - p_T and $|\eta|$ of (di)muons
 - dimuon invariant mass
 - secondary vertex probability
 - impact parameters
 - flight length
 - pointing angle

Trigger efficiencies evaluated with

- 1. MC methods
- 2. Data-driven methods: Tag & Probe

CMS Experiment at LHC, CERN Data recorded: Tue Jun 28 15:43:56 2011 CEST Run/Event: 167913 / 405277425 Lumi section: 382

Recent CMS BPhysics Highlights

B-hadrons cross-sections

- Integrated and double differential cross sections published:
 - <u>Phys.Rev.Lett.106:112001,2011</u> (B⁺), <u>Phys. Rev. Lett. 106, 252001 (2011)</u> (B_d), <u>Phys.Rev. D 84, 052008 (2011)</u> (B_s), <u>arXiv:1205.0594</u> (Λ_b)

First observation of the Ξ_b^{*0} hadron

- Through the decay chain:
 - $\Xi_b^{*0} \rightarrow \Xi_b^- \pi^+$
 - $\Xi_b^- \rightarrow J/\psi \ (\mu^+\mu^-) \Xi^-$
 - $\Xi^{-} \rightarrow \wedge^{0} \pi^{-}$
 - $\Lambda^0 \rightarrow p^+ \pi^-$

• Significance = 6.9σ

arXiv:1204.5955

Search for $D^0 \rightarrow \mu^+ \mu^-$

CMS-PAS-BPH-11-017

Normalization mode: $D^0 \rightarrow K^-\mu^+\nu$ to minimize differences at trigger level (single mu trigger)

No evidence of $D^0 \rightarrow \mu^+ \mu^-$ from D^{*+} :

10

CMS Experiment at LHC, CERN Data recorded: Wed Oct 26 08:10:31 2011 CEST Run/Event: 179889 / 533479508 Lumi section: 320

> Search for $B_s \rightarrow \mu^+\mu^$ arXiv:1203.3976

Motivation: search for new physics

In SM $B_s^0 \rightarrow \mu\mu$ and $B^0 \rightarrow \mu\mu$ have a highly suppressed rate:

- 1. forbidden at tree level and can only proceed through higher-order loop diagrams
- 2. helicity suppressed by factors of $(m_I/m_B)^2$, where m_I and m_B are the masses of the lepton and B meson
- **3.** require an internal quark annihilation within the B meson

Most recent results from other experiments:

95% CL upper limit*	CDF	ATLAS	LHCb	
BR (x10 ⁻⁹)	0.8< BR <34	< 22	< 4.5	

Decay channel	BF SM predictions*
$B^0 \to \mu^+ \mu^-$	$(1.1 \pm 0.1) \times 10^{-10}$ (Buras)
${\sf B}_{{}_{\sf S}}{}^0 {\rightarrow} \mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$	$(3.2 \pm 0.2) \times 10^{-9}$ (Buras)
${\rm B_s}^0 \to \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$	$(3.6 + 0.2_{-0.3}) \times 10^{-9}$ (CKM fitter)

BF(B_(s)⁰→µµ) are potentially sensitive probes for Physics Beyond SM:

- Sensitivity to extended Higgs boson sectors
- Constraints on SUSY parameter regions
 - Small theoretical uncertainties

- Buras arXiv:1009.1303
- CKM fitter: http://hep.ustc.edu.cn/indico/getFile.py/access?contribId=46&sessionId=18&resId=0&materialId=slides&confId=7
- LHCb: arXiv:1203.4493
- Atlas: arXiv:1204.0735
- CDF: http://agenda.infn.it/getFile.py/access?contribId=32&sessionId=5&resId=0&materialId=slides&confId=4116

Analysis overview

- Data corresponds to full 2011 run
- All the selections chosen with the signal regions blinded
- Backgrounds estimated from the sidebands and from MC
- Normalization sample $B^{\pm} \rightarrow J/\psi K^{\pm} \rightarrow (\mu^{+}\mu^{-}) K^{\pm}$ to avoid
 - uncertainties of the bb⁻ production cross section
 - luminosity measurement
 - and to mitigate the efficiency effects

$$Br(B_s^0 \to \mu^+ \mu^-) = \frac{N_s}{N_{obs}^{B^+}} \frac{f_u}{f_s} \frac{\varepsilon_{tot}^{B^+}}{\varepsilon_{tot}} Br(B^+)$$

 f_s/f_u = 0.267 ± 0.021 [LHCb arxiv:1111.2357] BR(B⁺) from the PDG

- Control sample B_s⁰ → J/ψφ →(μ⁺μ⁻)(K⁺K⁻) to compare and validate B_s⁰ mesons in data and MC simulations
- We do not need the luminosity absolute value anywhere
- Divided the sample in:
 - **barrel** (both muons with $|\eta| < 1.4$) \rightarrow better sensitivity, mass resolution $\approx 40 \text{ MeV}$
 - endcap (otherwise) → add statistics, mass resolution ≈ 60 MeV

Region definitions	Invariant mass (GeV)
overall window	$4.90 < m_{\mu 1 \mu 2} < 5.90$
blinding window	$5.20 < m_{\mu 1 \mu 2} < 5.45$
$B^0 \rightarrow \mu^+ \mu^-$ window	$5.20 < m_{\mu 1 \mu 2} < 5.30$
$B_s^{0} \rightarrow \mu^+ \mu^-$ window	$5.30 < m_{\mu 1 \mu 2} < 5.45$

Signal versus Background

^{combinatoria}l

shape from MC

- Signal $B_{(s)}^{0} \rightarrow \mu^{+} \mu^{-}$:
 - two reconstructed muons
 - invariant mass around M(B_(s)⁰)
 - long lived B, with a well reconstructed secondary vertex and a momentum aligned with flight direction

Ē

Backgrounds

- two semileptonic B decays
- flat shape one semileptonic B decay and one misidentified hadron
- single B decays
 - peaking $(B_{s}^{0} \rightarrow K^{-} K^{+})$
 - non peaking $(B_s^0 \rightarrow K^- \mu^+ \nu)$

Signal selection: most discriminating variables

- Pointing angle α_{3D}
- Flight length significance $I_{3D}/\sigma(I_{3D})$
- Impact parameter significance $\delta_{3D}/\sigma(\delta_{3D})$
- Selections optimized (random grid search) for best upper limit

Data side-bands vs signal MC:

13D

Isolation

Isolation cone around the Primary vertex:

$$I = \frac{p_{\perp}(B)}{p_{\perp}(B) + \sum_{trk} |p_{\perp}|}$$

Tuned to minimize MC/data discrepancies and maximize bkg rejection

Isolation on the Secondary vertex:

- Distance of the closest track to SV (d_{ca}⁰)
- Number of close tracks in $d_{ca} < 0.3$ mm and $p_T > 0.5$ GeV

Data side-bands vs signal MC:

Data - Simulation comparison

- Needed to validate signal (through the control sample) and normalization samples
- Differences data MC taken as systematics uncertainties:
 - > On $B^{\pm} \rightarrow J/\psi K^{\pm}$, max diff = 2.5% (isolation) tot = 4%
 - > $On B_s^0 \rightarrow J/\psi \phi$, max diff = 1.6% (secondary vertex $\chi^{2/n}$ dof) tot = 3%
- Excellent MC data comparison

Side-bands subtracted data vs control MC:

Pile-up

- in 2011: <N_{PV}> = 8, RMS(z) = 5.6 cm
- Selections have been tuned to be pile-up independent
 - e.g. isolation searches only for tracks coming from the same primary vertex or not associated to any
- Efficiencies of all selection criteria have been evaluated versus the number of reconstructed primary vertices
- All selections are compatible with a constant at least until 30 PV
 Normalization sample
 Control sample

 The same conclusion is also obtained from MC simulations, looking at samples with low (<6) or high (>10) PU events

Normalization Channel: $B^{\pm} \rightarrow J/\psi K^{\pm}$

- Needed for the extraction of the branching fraction
- Same selections as for signal, plus
 - 3.0 < m(μμ) < 3.2 GeV
 - pT(μμ) > 7 GeV
 - pT(K) > 0.5 GeV
 - all tracks used in vertexing
- Fit pdf:
 - signal: double Gaussian
 - bkg: exponential + error function at 5.145 GeV for
 - $B^0 \rightarrow J/\psi K^* \rightarrow \mu^+\mu^-K^-(\pi^+)$ decays
 - estimated sys error on the event yield: 5%
 - varying bkg, signal pdf
 - mass-constraining dimuons to J/ψ

	Barrel	Endcap
Acceptance	0.162 ± 0.006	0.111 ± 0.006
ϵ_{tot}	0.00110 ± 0.00009	0.00032 ± 0.00004
N _{obs}	82712 ± 4146	23809 ± 1203

Rare Backgrounds

- CKM-suppressed semileptonic decays
 - e.g. $B_s^{0} \rightarrow K^{-} \mu^{+} v$, with one fake muon (continuous shape)
- Peaking hadronic decays
 - e.g. $B_s^0 \rightarrow K^- K^+$, with two fake muons (shifted to left due to muon mass assignment)
- Each channel normalized to B[±] in data:

$$N(X) = \frac{Br(Y \to X)}{Br(B^{\pm} \to J/\psi K^{\pm})} \frac{f_Y}{f_u} \frac{\varepsilon_{tot}(X)}{\varepsilon_{tot}(B^{\pm})} N_{obs}(B^{\pm})$$

- weighted with muon-misid evaluated from data: $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+, \quad \Lambda \rightarrow p \pi^-$
 - $r \le 0.10$ % both for pions and kaons
 - r ≤ 0.05 % for protons
- sys errors: branching fractions and f_s/f_u
- Expected events:

Channel	low sideband	B ⁰ window	B _s ⁰ window	high sideband
Barrel	3.01 ± 0.63	0.332 ± 0.070	0.182 ± 0.057	0.02 ± 0.00
Endcap	1.26 ± 0.24	0.149 ± 0.028	0.082 ± 0.023	0.02 ± 0.00

Systematics (%) & cross-checks

• Uncertainties on the estimations of the single **sources**:

Category	Uncertainty	Barrel	Endcap
f_s/f_u	production ratio of <i>u</i> and <i>s</i> quarks	8.0	8.0
acceptance	production processes	3.5	5.0
P^B_{ij} *	mass scale and resolution	3.0	3.0
efficiency (signal)	discrepancies data/MC simulation	3.0	3.0
efficiency (normalization)	discrepancies data/MC simulation	4.0	4.0
efficiency (normalization)*	kaon track efficiency	4.0	4.0
efficiency	trigger	3.0	6.0
efficiency	muon identification	4.0	8.0
normalization	fit pdf	5.0	5.0
background *	shape of combinatorial background	4.0	4.0
background	rare decays	20.0	20.0

Cross Checks:

- Background estimate with inverted isolation (I<0.7, not blinded)
- Branching fraction of $B^0_s \rightarrow J/\psi \varphi$
 - cross-check for consistency

Stability of the event yield ratios during 2011

...unblinding

Variable	B⁰→µµ Barrel	B _s ⁰→μμ Barrel	B⁰→μμ Endcap	B _s ⁰→μμ Endcap
ε _{tot}	0.0029 ± 0.0002	0.0029 ± 0.0002	0.0016 ± 0.0002	0.0016 ± 0.0002
N _{signal} exp	0.24 ± 0.02	2.70 ± 0.41	0.10 ± 0.01	1.23 ± 0.18
N _{comb} ^{exp}	0.40 ± 0.34	0.59 ± 0.50	0.76 ± 0.35	1.14 ± 0.53
N _{peak} exp	0.33 ± 0.07	0.18 ± 0.06	0.15 ± 0.03	0.08 ± 0.02
N _{total} exp	0.97 ± 0.35	3.47 ± 0.65	1.01 ± 0.35	2.45 ± 0.56
N _{obs}	2	2	0	4

Estimated combinatorial events in signal windows:

- 1. subtract rare events from sidebands
- 2. scale remaining events to the different widths of the regions

22

Results on the upper limits

 observed
 median expected

 BR(B_s⁰→μμ)
 7.7 x 10⁻⁹
 8.4 x 10⁻⁹

 BR(B⁰→μμ)
 1.8 x 10⁻⁹
 1.6 x 10⁻⁹

Bkg only hypothesis:

With CLs at 95%CL:

Bkg + SM signal hypothesis:

Few SUSY interpretations: CMSSM and NUHM1 models

- White regions due to previous upper limit results
- Biggest impact for high tan(β)

24

SuperIso V3.1 (CPC, 180, 1579) MasterCode (arXiv:1112.3564)

CMS Experiment at LHC, CERN Data recorded: Wed Aug 17 06:31:23 2011 CEST Run/Event: 173389 / 173713433 Lumi section: 137

Forecasts

- -

Outlook for 2012 data taking and more

- CMS BPhysics programme is on and looking forward the LHC integrated luminosity
- Main limitation is the trigger bandwidth
- Focus is the significant scientific interest and competitiveness with other experiments

Year	Int Lumi (1/fb)		
2011	5		
2012	15		
2015	45		
2017	95		
> 2019	few hundred		

Conclusions

- After the first two years of LHC running, CMS has shown its strength in heavy flavor physics:
 - Comprehensive set of open B and Quarkonium cross sections
 - Discovery of a new beauty baryon
 - Upper limits on rare B and D decays
- Flexible trigger, efficient muon reconstruction, good mass resolution and accurate vertexing have been the the main factors facilitating the successful CMS programme
- The increasing instantaneous luminosity will impose constraints on this programme through the CMS bandwidth assigned to BPhysics.
- Expect great analysis improvements for $B_s \rightarrow \mu^+ \mu^-$ search in 2012:
 - MVA techniques under study
 - 2012 trigger is looser than in 2011
 - About 15 fb⁻¹ expected to be added to 2011 data
- Looking forward new exciting physics at CMS!

Backup

The defining regions

For the signal:

B Mass = 5.28 GeV, B_s Mass = 5.37 GeV

Region definitions	Invariant mass (GeV)	Region definitions	Invariant mass (GeV)
overall window	$4.90 < m_{\mu 1 \mu 2} < 5.90$	$B^0 ightarrow \mu^+ \mu^-$ window	$5.20 < m_{\mu 1 \mu 2} < 5.30$
blinding window	$5.20 < m_{\mu 1 \mu 2} < 5.45$	$B_s^{\ 0} \rightarrow \mu^* \mu^-$ window	$5.30 < m_{\mu 1 \mu 2} < 5.45$

For the normalization: (Jpsi mass in [3.0, 3.2])

Region definitions	Invariant mass (GeV)	Region definitions	Invariant mass (GeV)
overall window	$4.90 < m_{\mu 1 \mu 2 \kappa} < 5.90$	signal region	$5.20 < m_{\mu 1 \mu 2 \kappa} < 5.35$
low sideband	$5.05 < m_{\mu 1 \mu 2 \kappa} < 5.15$	high sideband	$5.40 < m_{\mu 1 \mu 2 \kappa} < 5.50$

For the control: (Jpsi mass in [3.0, 3.2], Phi mass in [0.995, 1.045] and ΔR_{kk} <0.25)

Region definitions	Invariant mass (GeV)	Region definitions	Invariant mass (GeV)
overall window	$4.90 < m_{\mu 1 \mu 2 \kappa \kappa} < 5.90$	signal region	$5.27 < m_{\mu 1 \mu 2 K K} < 5.47$
low sideband	$5.10 < m_{\mu 1 \mu 2 \kappa \kappa} < 5.20$	high sideband	$5.50 < m_{\mu 1 \mu 2 K K} < 5.60$

Candidate Selection: optimization

- Optimization of the selections made with a random grid search with 1.4 x 10⁶ runs
- Uses Bkg side-band and signal MC
- Figure of merit: best upper limit

Variable	Barrel	Endcap	units
$p_{T_{u,1}} >$	4.5	4.5	GeV
$p_{T_{u,2}} >$	4.0	4.2	GeV
p_{T_B} >	6.5	8.5	GeV
δ_{3D} <	0.008	0.008	cm
$\delta_{3D}/\sigma(\delta_{3D}) <$	2.000	2.000	
α <	0.050	0.030	rad
$\chi^2/dof <$	2.2	1.8	
$\ell_{3d}/\sigma(\ell_{3d}) >$	13.0	15.0	
I >	0.80	0.80	
$d_{\rm ca}^0 >$	0.015	0.015	cm
$N_{ m trk}^{ m close} <$	2	2	tracks

Upper limit extraction

 $N_s^B \sim \operatorname{Pois}(\tau_s^B \nu_b^B + \nu_{s,\text{rare}}^B + P_{ss}^B \mu_s \nu_s^B + P_{sd}^B \mu_d \nu_d^B)$ $N_d^B \sim \operatorname{Pois}(\tau_d^B \nu_b^B + \nu_{d,\text{rare}}^B + P_{ds}^B \mu_s \nu_s^B + P_{dd}^B \mu_d \nu_d^B)$

with (i = s, d)

The expected number of reconstructed decays assuming SM is

$$\nu_{i} = \frac{\mathcal{B}^{\mathrm{SM}}(B_{i}^{0} \to \mu\mu)}{\mathcal{B}(B^{\pm} \to J/\psi K^{\pm})} \frac{f_{s}}{f_{u}} \frac{A_{B_{s}^{0}}}{A_{B^{\pm}}} \frac{\varepsilon_{\mathrm{trig}}^{B_{s}^{0}}}{\varepsilon_{\mathrm{trig}}^{B^{+}}} \frac{\varepsilon_{\mu}^{B_{s}^{0}}}{\varepsilon_{\mu}^{B^{+}}} \frac{\varepsilon_{\mathrm{analysis}}^{B_{s}^{0}}}{\varepsilon_{\mathrm{analysis}}^{B^{+}}} N^{\mathrm{obs}}(B^{\pm} \to J/\psi K^{\pm})$$

in each "channel" (B_s, B_d in barrel, endcap)

The total model is 6 poissonian observables $(N_s^{E}, N_s^{B}, N_d^{E}, N_d^{B}, N_b^{E}, N_b^{B})$, 2 nuisance parameters for background (v_b^{E}, v_b^{B}) and additional nuisance parameters for systematic uncertainties.

Results on the upper limits: p-values

With CLs at 95%CL

	observed	median expected
BR(B _s ⁰ →μμ)	7.7 x 10 ⁻⁹	8.4 x 10 ⁻⁹
BR(B⁰→μμ)	1.8 x 10 -9	1.6 x 10 ⁻⁹

• p-values for SM + bkg

	w/o cross feed	w/ SM cross feed	floating cross feed		w/ SM cross feed
BR(B _s ⁰ →μμ)	0.06 (1.5σ)	0.07 (1.5σ)	0.11 (1.2σ)	BR(B _s ⁰ →μμ)	0.71
BR(B⁰→μμ)	0.11 (1.2σ)	0.29 (0.6σ)	0.24 (0.7σ)	BR(B⁰→μμ)	0.86

32

MasterCode

Best fit for CMSSM

With summer 2011 result

30

40

50

60

tan(β)

20

NUHM1

10

Hot Topics

- CP-violation phase ϕ_s through $B_s \rightarrow J/\psi \phi$ decay:
 - roadmap: cross section (done) \rightarrow lifetime difference $\Delta\Gamma \rightarrow CP$ violating phase φ_s
 - flavor tagging
 - $B \rightarrow J/\psi f_0(980)$ can complement the measure
- $\tau \rightarrow \mu \mu \mu$: Lepton Flavour Violation (Best limit: Belle 2.1 10⁻⁸ @90% CL)
 - Collecting data with a 2 muons + 1 track trigger
 - Expected competitive UL with 10 fb⁻¹ and total efficiency > 10%

Channel	CMS physics target
Β₅→μ⁺μ⁻	Measure the branching fraction
B ⁰ →µ⁺µ⁻	Upper limit for the branching fraction
B ⁰ →µ⁺µ⁻K ^{*0}	Consistency with the SM
B _s →J/ψφ (B _s →J/ψf ₀)	Measure φ _s
τ ⁻ → μ ⁻ μ ⁺ μ ⁻	Improved upper limit for the branching fraction
D⁰→µ⁺µ⁻	Improved upper limit for the branching fraction
Exotic quarkonium states	Discovery of new states