Extracting $|V_{ub}|$ and $B o X_s \gamma$ from global fits

Kerstin Tackmann (DESY)

Florian Bernlochner (U of Victoria) Heiko Lacker (HU Berlin) Zoltan Ligeti (LBL) Iain Stewart (MIT) Frank Tackmann (DESY) KT

4th SuperB Collaboration Meeting – La Biodola (Isola d'Elba) Italy Physics Workshop May 31, 2012

Inclusive $|V_{ub}|$ at B_AB_{AR} and Belle

Very rough scetch of an inclusive $|V_{ub}|$ measurement

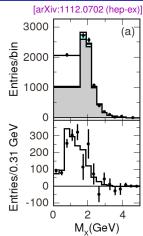
- Measurement of partial branching fraction $\Delta \mathcal{B}(B \to X_u \ell \nu)$
 - \star Select phase space regions more-or-less enriched with $B o X_u \ell
 u$

$$|V_{ub}| = \sqrt{rac{\Delta {\cal B}(B
ightarrow X_u \ell
u)}{ au_B \Delta \Gamma_{
m theory}}}$$

- 2 Input to $\Delta\Gamma_{
 m theory}$
 - $\star \, m_b$ from $B o X_c \ell
 u$ or elsewhere
 - \star Shape function model (tested against $B
 ightarrow X_s \gamma$)

Inclusive $|V_{cb}|$ follows a different strategy:

• Global fit to kinematic moments measured in $B \to X_c \ell \nu$ to extract $|V_{cb}|$, m_b and nonperturbative parameters



🥯 Global Fit Approach to $|V_{ub}|$ and $B o X_s \gamma$

Employ strategy that proved successful for $\left|V_{cb}\right|$

- Determine $|V_{ub}|$, m_b and shape function (SF) simultaneously
- Combine different decay modes, measurements and experiments
 - \star Different $B
 ightarrow X_s \gamma$ spectra
 - Information about shape function, m_b and C₇
 - \star Different $B \to X_u \ell \nu$ partial BFs (or spectra)
 - Information about $|V_{ub}|$, shape function and m_b
 - Differential spectra would be more powerful
 - \star External constraints on m_b and shape function moments (from $B o X_c \ell
 u$ or other) could also be incorporated

What we gain from a global fit

- Minimize uncertainties by making maximal use of all available data
- Consistent treatment of correlated uncertainties (experimental, theoretical, input parameters)

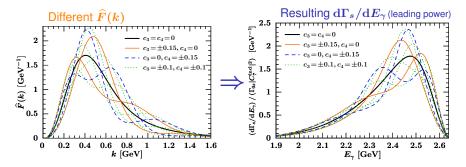
Master Formula for Differential Spectra

$$\mathrm{d}\Gamma_s = |V_{tb}V_{ts}^*|^2 m_b^2 \left|C_7^{\mathrm{incl}}\right|^2 \int \mathrm{d}k \,\widehat{W}_{77}(E_\gamma;k)\,\widehat{F}(m_B - 2E_\gamma - k) + \cdots$$

 $\mathrm{d}\Gamma_u = |V_{ub}|^2 \int \mathrm{d}k \,\widehat{W}_u(p_X^-, p_X^+, E_\ell;k)\widehat{F}(p_X^+ - k) + \cdots$

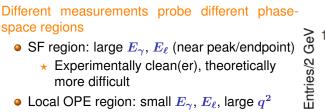
Normalization of spectra

Differential shape (SF)

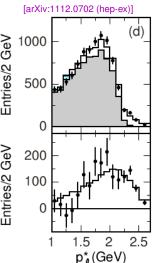


Kerstin Tackmann (DESY)

Regions of Phase Space



- ★ Suffers from large backgrounds, theoretically easier
- Something in between: $m_X \sim m_D,$ moderately large E_γ, E_ℓ
- ⇒ Include as wide region as possible since there is no "golden" region
- ⇒ Need combination of optimal theory descriptions for each region



Derived Theory Inputs for $B o X_s \gamma$

$$egin{aligned} &\Gamma_s \propto |V_{tb}V_{ts}^*|^2 m_b^2 \Big\{ ig| C_7^{ ext{incl}} ig|^2 \Big[ig(\widehat{W}_{77}^{ ext{sing}} + \widehat{W}_{77}^{ ext{nons}} ig) \otimes \widehat{F} + \sum_n W_{77,n} F_n^{ ext{subl}} \Big] \ &+ \sum_{i,j
eq 7} \Big[ext{Re}(C_7^{ ext{incl}}) 2 C_i \widehat{W}_{7i}^{ ext{nons}} + C_i C_j \widehat{W}_{ij}^{ ext{nons}} \Big] \otimes \widehat{F} + \cdots \Big\} \end{aligned}$$

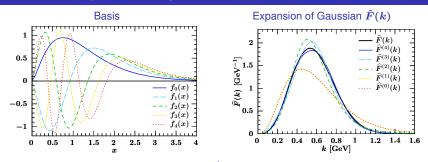
Leading C_7^2 contribution

- Included at full NNLL+NNLO (in short-distance scheme, e.g. 1S, kin, ...)
- $1/m_b$ subleading shape functions (can be) absorbed into leading one
 - \star Have large impact on extracted value of $m_b~(\sim 70\,{
 m MeV})$

Contributions from other operators $\sim C_i C_7, C_i C_j$

- Largest effects come from virtual corrections, are absorbed into C_7^{incl}
 - \star Important charm-mass effects only enter via SM prediction for $C_7^{\rm incl}$
- Remaining perturbative contributions included at NLO
 - * Some NNLO are known, but NLO already have very small effect on fit
- C_{i≠7} fixed to SM values

Modeling the Shape Function



Design suitable orthonormal basis for $\hat{F}(k)$ (formally model independent) $\hat{F}(\lambda x) = \frac{1}{\lambda} \left[\sum_{n=0}^{\infty} c_n f_n(x) \right]^2$ with $\int dk \, \hat{F}(k) = \sum_{n=0}^{\infty} c_n^2 = 1$

- Builds an orthonormal basis $f_n(x)$ on top of any given model function
- Keep terms up to $n \leq N$ as required by precision of data
- Experimental uncertainties and correlations can be properly captured by uncertainties and correlations in basis coefficients c_n

[Ligeti, Stewart, F Tackmann (2008)]

Residual Basis Dependence from Truncation

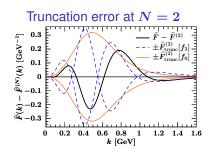
$$\widehat{F}(\lambda x) = rac{1}{\lambda} iggl[\sum\limits_{n=0}^N c_n f_n(x) iggr]^2$$

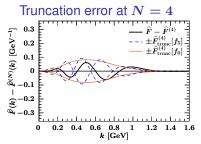
In practice, series must be truncated

- Induces residual basis (model) dependence
- Truncation error scales as $1 \sum_{n=0} c_n^2$

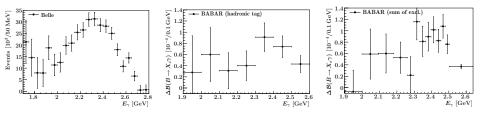
Optimal N and λ are determined from data

- Choose λ so series converges quickly
- Choose *N* so truncation error is small compared to exp. uncertainties
- Add more terms with more precise data
- ⇒ Must be careful not to "overtune"





Surrent Inputs for $B o X_s \gamma$ Fit



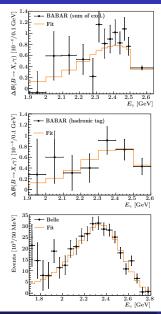
Belle $605 \, \mathrm{fb}^{-1}$

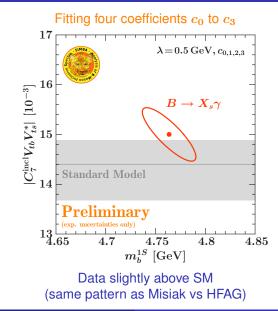
- Thanks to Belle, especially Antonio Limosani, for providing the covariance matrix, experimental efficiency and resolution!
- Efficiency and resolution effects folded into theory predictions

BABAR sum-over-exclusive-modes (80 fb⁻¹), hadronic tag (210 fb⁻¹)

- Correlations are available
- Spectra efficiency corrected, resolution not an issue
- Thanks to Francesca Di Lodovico and Henning Flächer

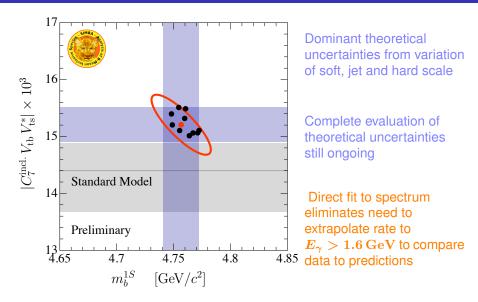
${\textcircled{\sc op}} B o X_s \gamma$ Fit Results



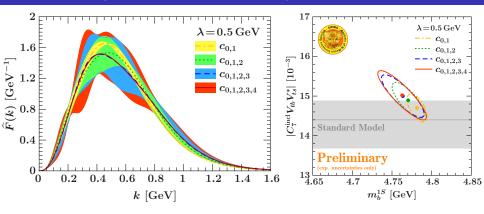


Kerstin Tackmann (DESY)

Theoretical Uncertainties



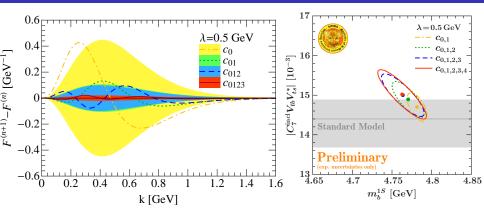
Convergence of the Basis Expansion



Uncertainties underestimated with too few coefficients (c_{0,1})

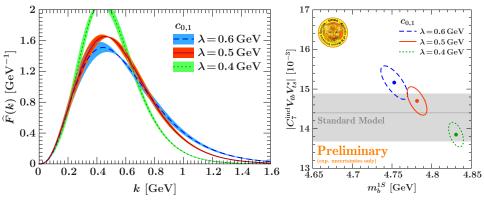
- ★ Would need to include additional uncertainty due to truncation
- Very little change from including 5th coefficient (c₄)
 - * Truncation uncertainty negligible compared to other uncertainties

Convergence of the Basis Expansion



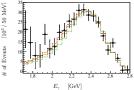
• Uncertainties underestimated with too few coefficients $(c_{0,1})$

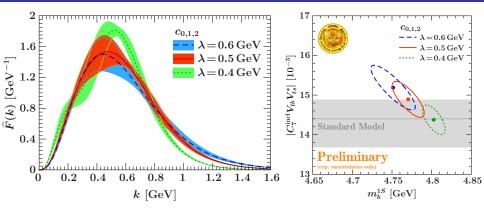
- ★ Would need to include additional uncertainty due to truncation
- Very little change from including 5th coefficient (c₄)
 - * Truncation uncertainty negligible compared to other uncertainties

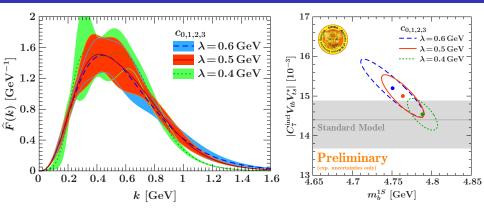


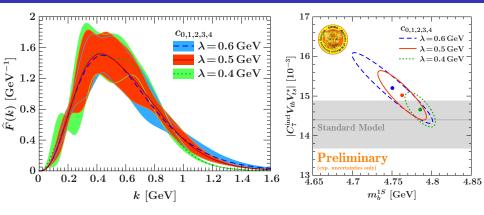
Fit with only two basis functions

- Equivalent to fixed model with fitted 1st moment
- All with good χ^2/ndf : 37.5/40, 28.8/40, 27.8/40
- ⇒ Uncertainties underestimate model dependence









⇒ With enough coefficients results agree within uncertainties and become basis (model) independent

🥯 Simba @ SuperB

Global fit approach can be very powerful with high statistics

- Measure spectra in addition to (partial) BFs to maximize the available shape information, especially for $B \to X_u \ell \nu$
 - ★ Shape information is key to constraining subleading corrections
- Large dataset can be taken advantage of to agressively reject backgrounds at the cost of efficiency and to maximize resolution
 - \star My personal favorite is a super-clean $B_{
 m reco}$ sample

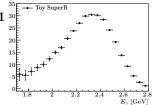
🥯 Simba @ SuperB

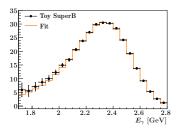
Global fit approach can be very powerful with high statistics

- Measure spectra in addition to (partial) BFs to maximize the available shape information, especially for $B \to X_u \ell \nu$
 - ★ Shape information is key to constraining subleading corrections
- Large dataset can be taken advantage of to agressively reject backgrounds at the cost of efficiency and to maximize resolution
 - \star My personal favorite is a super-clean $B_{
 m reco}$ sample

Toy $B o X_s \gamma$ @ 75 ab^{-1}

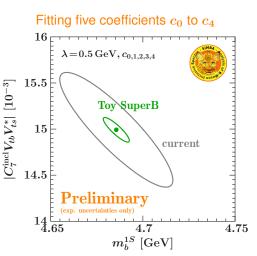
- Spectrum generated with $\lambda = 0.6 \, {
 m GeV}, \, c_0 = 1$
- Uncertainties and correlations obtained from inclusive Belle spectrum:
 - * Statistical uncertainties scaled by lumi
 - ⋆ Systematic uncertainties scaled by 1/3
 - Correlations and detector resolution assumed to be the same





Theoretical uncertainties will dominate

High precision data can be used to fit for more c_n and for subleading effects

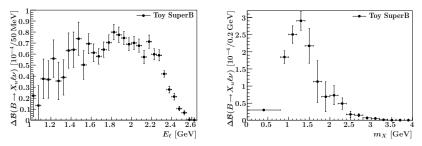


Note: NLL+NLO since we will also include $B \to X_u \ell \nu$, for simplicity ignoring subleading SF

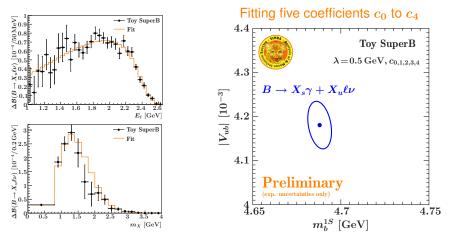
${ig|}$ Including $B o X_u\ell u$ @ SuperB

Toy $B o X_u \ell \nu$ @ 75 ab^{-1}

- m_X and E_ℓ spectra generated with $\lambda = 0.6 \, {
 m GeV}, \, c_0 = 1$
- Uncertainties and correlations inspired by current *BABAR* hadronic tag analysis
 - \star Assuming main uncertainties and correlations due to $B \to X_c \ell \nu$ background
 - ⋆ Aimed at being (too?) conservative
 - Caveat: no resolution effects considered here



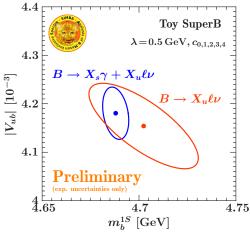
${ig > 0}$ Including $B o X_u \ell u$ @ SuperB



- Large amount of data can be used to push analyses to the limits, on the experimental as well as the theoretical side
- High precision data should be used to disentangle subleading effects between $B \to X_s \gamma$ and $B \to X_u \ell \nu$ (no attempt here!)

Kerstin Tackmann (DESY)

$\textcircled{B} o X_u \ell u$ Standalone @ SuperB



Use $B \rightarrow X_u \ell \nu$ alone to determine m_b and shape function along with $|V_{ub}|$

• Eliminates sensitivity to different subleading effects in $B \rightarrow X_s \gamma$ and $B \rightarrow X_u \ell \nu$

Fitting five coefficients c_0 to c_4

Global fit to $B \to X_s \gamma$ and $B \to X_u \ell \nu$ with a model-independent treatment of the shape function

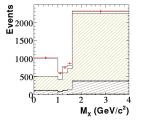
- Global fit approach minimizes uncertainties by making maximal use of available data
- SF and its uncertainties are determined by the data
 - Convergence behavior can be studied on data to estimate truncation uncertainty
- \Rightarrow Study of $B
 ightarrow X_s \gamma$ without need to extrapolate to lower E_γ
- ⇒ Combine $B \to X_s \gamma$ and $B \to X_u \ell \nu$ for $|V_{ub}|$ determination and constrain m_b and shape function at the same time

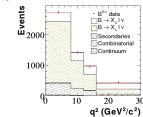
Global fit approach well-suited for SuperB

- High luminosity can be used to measure high-quality differential spectra
- ightarrow Can be used for more sophisticated analyses than current B factory data
 - ${\: \bullet \:}$ Precise study of $B \to X_s \gamma$ including subleading effects from data
 - Precision |V_{ub}| without external inputs

Inclusive $|V_{ub}|$ with Hadronic Tags at Belle

[arXiv:0907.0379 (hep-ex)]





- 90% of $B \to X_u \ell \nu$ phase space included
- But much of the gained phase space comes with large backgrounds and corresponding systematics
 - \star Main sensitivity still from low- M_X region

$p_\ell^{*B} > 1.0~{\rm GeV}$	$\Delta {\cal B}/{\cal B}$ (%)
$\mathcal{B}(D^{(*)}\ell\nu)$	1.2
$(D^{(*)}\ell\nu)$ form factors	1.2
$\mathcal{B}(D^{**}e\nu)$ & form factors	0.2
$B \to X_u \ell \nu$ (SF)	3.6
$B \to X_u \ell \nu \ (g \to s\bar{s})$	1.5
$^{0} \mathcal{B}(B \to \pi/\rho/\omega\ell\nu)$	2.3
$\mathcal{B}(B o \eta, \ \eta' \ell \nu)$	3.2
$\mathcal{B}(B \to X_u \ell \nu)$ un-meas.	2.9
Cont./Comb.	1.8
Sec./Fakes/Fit.	1.0
PID/Reconstruction	3.1
BDT	3.1
Systematics	8.1
Statistics	8.8

Formerly "theoretical" uncertainties now moved into "experimental" uncertainties (SF), where they are even harder to get rid of later

Master formula for binned spectra

Shape function basis
$$\widehat{F}(\lambda x) = rac{1}{\lambda} iggl[\sum\limits_n c_n f_n(x) iggr]^2$$

Insert expansion for $\widehat{F}(k)$ into Master formula

$$\mathrm{d}\Gamma_s = |V_{tb}V_{ts}^*|^2 m_b^2 \left| C_7^{\mathrm{incl}} \right|^2 \sum_{m,n} c_m c_n \mathrm{d}\Gamma_{mn}^{77} \qquad \mathrm{d}\Gamma_u = |V_{ub}|^2 \sum_{m,n} c_m c_n \mathrm{d}\Gamma_{mn}^u$$

- Default basis parameter: $\lambda = 0.5 \, \text{GeV}$
- Include up to 5 basis coefficients (c₀ to c₄)
- Fix $\sum_n c_n^2 = 1$ to enforce correct normalization $\int k \widehat{F}(k) = 1$

Fit Setup

 χ^2 Fit

- Includes all experimental correlations
- Extensively validated with pseudo experiments
 - \star Just having a good χ^2/ndf is not enough

Shape function basis $\widehat{F}(\lambda x) = rac{1}{\lambda} igg[\sum\limits_n c_n f_n(x) igg]^2$

- Default basis parameter: $\lambda = 0.5 \text{ GeV}$
- Include up to 5 basis coefficients (c₀ to c₄)
- Fix $\sum_n c_n^2 = 1$ to enforce correct normalization $\int k \widehat{F}(k) = 1$

Disclaimer: What I am showing is active work in progress

- Numbers still subject to change
- Theoretical uncertainties very preliminary

Current status of experiment to theory comparison

• HFAG extrapolation down to $E_{\gamma}^{\rm cut} = 1.6 \, {\rm GeV}$ (adds model dependence)

 ${\cal B}(E_{\gamma}>1.6\,{
m GeV})=(3.55\pm0.24\pm0.09) imes10^{-4}$

Fixed-order NNLO estimate by Misiak et al. (2006)

 ${\cal B}(E_{\gamma}>1.6\,{
m GeV})=(3.15\pm0.23) imes10^{-4}$

Sensitivity to new physics lies in normalization, parametrized by $|V_{tb}V_{ts}^*C_7^{\text{incl}}|$

- Most sensitivity in data comes from large E_{γ}
- Fit determines both $|V_{tb}V_{ts}^*C_7^{\text{incl}}|$ (normalization) and $\widehat{F}(k)$ (shape)
 - \star Can directly compare $|V_{tb}V_{ts}^*C_7^{\text{incl}}|$ to its SM prediction
 - ★ Avoids any extrapolation

